Colors of
variables: wff set class |
Syntax hints:
→ wi 4 ∈ wcel 2148
(class class class)co 5874 ℂcc 7808
− cmin 8127 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709
ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-setind 4536 ax-resscn 7902 ax-1cn 7903 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-distr 7914 ax-i2m1 7915 ax-0id 7918 ax-rnegex 7919 ax-cnre 7921 |
This theorem depends on definitions:
df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-iota 5178 df-fun 5218 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-sub 8129 |
This theorem is referenced by: pnpncand
8331 kcnktkm1cn
8339 muleqadd
8624 peano2zm
9290 peano5uzti
9360 modqmuladdnn0
10367 modsumfzodifsn
10395 hashfz
10800 hashfzo
10801 shftfvalg
10826 ovshftex
10827 shftfibg
10828 shftfval
10829 shftdm
10830 shftfib
10831 shftval
10833 2shfti
10839 crre
10865 remim
10868 remullem
10879 resqrexlemover
11018 resqrexlemcalc1
11022 abssubne0
11099 abs3lem
11119 caubnd2
11125 maxabslemlub
11215 maxabslemval
11216 maxcl
11218 minabs
11243 bdtrilem
11246 bdtri
11247 climuni
11300 mulcn2
11319 reccn2ap
11320 cn1lem
11321 climcvg1nlem
11356 fsumparts
11477 arisum2
11506 geosergap
11513 geo2sum2
11522 geoisum1c
11527 cvgratnnlemrate
11537 sinval
11709 sinf
11711 tanval2ap
11720 tanval3ap
11721 sinneg
11733 efival
11739 cos12dec
11774 pythagtriplem1
12264 pythagtriplem14
12276 pythagtriplem16
12278 pythagtriplem17
12279 dvdsprmpweqle
12335 4sqlem5
12379 mul4sqlem
12390 addcncntoplem
14021 mulcncflem
14060 cnopnap
14064 limcimolemlt
14103 limcimo
14104 cnplimclemle
14107 limccnp2lem
14115 dvlemap
14119 dvconst
14131 dvid
14132 dvcnp2cntop
14133 dvaddxxbr
14135 dvmulxxbr
14136 dvcoapbr
14141 dvcjbr
14142 dvrecap
14147 dveflem
14157 dvef
14158 sin0pilem1
14172 ptolemy
14215 tangtx
14229 cosq34lt1
14241 lgsdirprm
14405 qdencn
14745 trirec0
14762 apdifflemf
14764 apdifflemr
14765 apdiff
14766 |