| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcld | GIF version | ||
| Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subcl 8242 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 − cmin 8214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 |
| This theorem is referenced by: pnpncand 8418 kcnktkm1cn 8426 muleqadd 8712 ofnegsub 9006 peano2zm 9381 peano5uzti 9451 modqmuladdnn0 10477 modsumfzodifsn 10505 hashfz 10930 hashfzo 10931 shftfvalg 11000 ovshftex 11001 shftfibg 11002 shftfval 11003 shftdm 11004 shftfib 11005 shftval 11007 2shfti 11013 crre 11039 remim 11042 remullem 11053 resqrexlemover 11192 resqrexlemcalc1 11196 abssubne0 11273 abs3lem 11293 caubnd2 11299 maxabslemlub 11389 maxabslemval 11390 maxcl 11392 minabs 11418 bdtrilem 11421 bdtri 11422 climuni 11475 mulcn2 11494 reccn2ap 11495 cn1lem 11496 climcvg1nlem 11531 fsumparts 11652 arisum2 11681 geosergap 11688 geo2sum2 11697 geoisum1c 11702 cvgratnnlemrate 11712 sinval 11884 sinf 11886 tanval2ap 11895 tanval3ap 11896 sinneg 11908 efival 11914 cos12dec 11950 bitsinv1lem 12143 pythagtriplem1 12459 pythagtriplem14 12471 pythagtriplem16 12473 pythagtriplem17 12474 dvdsprmpweqle 12531 4sqlem5 12576 mul4sqlem 12587 4sqlem17 12601 addcncntoplem 14881 mulcncflem 14927 cnopnap 14931 limcimolemlt 14984 limcimo 14985 cnplimclemle 14988 limccnp2lem 14996 dvlemap 15000 dvconst 15014 dvid 15015 dvconstre 15016 dvidre 15017 dvconstss 15018 dvcnp2cntop 15019 dvaddxxbr 15021 dvmulxxbr 15022 dvcoapbr 15027 dvcjbr 15028 dvrecap 15033 dveflem 15046 dvef 15047 sin0pilem1 15101 ptolemy 15144 tangtx 15158 cosq34lt1 15170 lgsdirprm 15359 gausslemma2dlem1a 15383 qdencn 15758 trirec0 15775 apdifflemf 15777 apdifflemr 15778 apdiff 15779 |
| Copyright terms: Public domain | W3C validator |