![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subcld | GIF version |
Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
subcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subcl 8174 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 (class class class)co 5891 ℂcc 7827 − cmin 8146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-setind 4551 ax-resscn 7921 ax-1cn 7922 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-addcom 7929 ax-addass 7931 ax-distr 7933 ax-i2m1 7934 ax-0id 7937 ax-rnegex 7938 ax-cnre 7940 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5233 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-sub 8148 |
This theorem is referenced by: pnpncand 8350 kcnktkm1cn 8358 muleqadd 8643 peano2zm 9309 peano5uzti 9379 modqmuladdnn0 10386 modsumfzodifsn 10414 hashfz 10819 hashfzo 10820 shftfvalg 10845 ovshftex 10846 shftfibg 10847 shftfval 10848 shftdm 10849 shftfib 10850 shftval 10852 2shfti 10858 crre 10884 remim 10887 remullem 10898 resqrexlemover 11037 resqrexlemcalc1 11041 abssubne0 11118 abs3lem 11138 caubnd2 11144 maxabslemlub 11234 maxabslemval 11235 maxcl 11237 minabs 11262 bdtrilem 11265 bdtri 11266 climuni 11319 mulcn2 11338 reccn2ap 11339 cn1lem 11340 climcvg1nlem 11375 fsumparts 11496 arisum2 11525 geosergap 11532 geo2sum2 11541 geoisum1c 11546 cvgratnnlemrate 11556 sinval 11728 sinf 11730 tanval2ap 11739 tanval3ap 11740 sinneg 11752 efival 11758 cos12dec 11793 pythagtriplem1 12283 pythagtriplem14 12295 pythagtriplem16 12297 pythagtriplem17 12298 dvdsprmpweqle 12354 4sqlem5 12398 mul4sqlem 12409 addcncntoplem 14435 mulcncflem 14474 cnopnap 14478 limcimolemlt 14517 limcimo 14518 cnplimclemle 14521 limccnp2lem 14529 dvlemap 14533 dvconst 14545 dvid 14546 dvcnp2cntop 14547 dvaddxxbr 14549 dvmulxxbr 14550 dvcoapbr 14555 dvcjbr 14556 dvrecap 14561 dveflem 14571 dvef 14572 sin0pilem1 14586 ptolemy 14629 tangtx 14643 cosq34lt1 14655 lgsdirprm 14819 qdencn 15160 trirec0 15177 apdifflemf 15179 apdifflemr 15180 apdiff 15181 |
Copyright terms: Public domain | W3C validator |