| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcld | GIF version | ||
| Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subcl 8270 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 − cmin 8242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 |
| This theorem is referenced by: pnpncand 8446 kcnktkm1cn 8454 muleqadd 8740 ofnegsub 9034 peano2zm 9409 peano5uzti 9480 modqmuladdnn0 10511 modsumfzodifsn 10539 hashfz 10964 hashfzo 10965 shftfvalg 11100 ovshftex 11101 shftfibg 11102 shftfval 11103 shftdm 11104 shftfib 11105 shftval 11107 2shfti 11113 crre 11139 remim 11142 remullem 11153 resqrexlemover 11292 resqrexlemcalc1 11296 abssubne0 11373 abs3lem 11393 caubnd2 11399 maxabslemlub 11489 maxabslemval 11490 maxcl 11492 minabs 11518 bdtrilem 11521 bdtri 11522 climuni 11575 mulcn2 11594 reccn2ap 11595 cn1lem 11596 climcvg1nlem 11631 fsumparts 11752 arisum2 11781 geosergap 11788 geo2sum2 11797 geoisum1c 11802 cvgratnnlemrate 11812 sinval 11984 sinf 11986 tanval2ap 11995 tanval3ap 11996 sinneg 12008 efival 12014 cos12dec 12050 bitsinv1lem 12243 pythagtriplem1 12559 pythagtriplem14 12571 pythagtriplem16 12573 pythagtriplem17 12574 dvdsprmpweqle 12631 4sqlem5 12676 mul4sqlem 12687 4sqlem17 12701 addcncntoplem 15004 mulcncflem 15050 cnopnap 15054 limcimolemlt 15107 limcimo 15108 cnplimclemle 15111 limccnp2lem 15119 dvlemap 15123 dvconst 15137 dvid 15138 dvconstre 15139 dvidre 15140 dvconstss 15141 dvcnp2cntop 15142 dvaddxxbr 15144 dvmulxxbr 15145 dvcoapbr 15150 dvcjbr 15151 dvrecap 15156 dveflem 15169 dvef 15170 sin0pilem1 15224 ptolemy 15267 tangtx 15281 cosq34lt1 15293 lgsdirprm 15482 gausslemma2dlem1a 15506 qdencn 15928 trirec0 15945 apdifflemf 15947 apdifflemr 15948 apdiff 15949 |
| Copyright terms: Public domain | W3C validator |