![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subcld | GIF version |
Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
subcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subcl 8220 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 − cmin 8192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 |
This theorem is referenced by: pnpncand 8396 kcnktkm1cn 8404 muleqadd 8689 ofnegsub 8983 peano2zm 9358 peano5uzti 9428 modqmuladdnn0 10442 modsumfzodifsn 10470 hashfz 10895 hashfzo 10896 shftfvalg 10965 ovshftex 10966 shftfibg 10967 shftfval 10968 shftdm 10969 shftfib 10970 shftval 10972 2shfti 10978 crre 11004 remim 11007 remullem 11018 resqrexlemover 11157 resqrexlemcalc1 11161 abssubne0 11238 abs3lem 11258 caubnd2 11264 maxabslemlub 11354 maxabslemval 11355 maxcl 11357 minabs 11382 bdtrilem 11385 bdtri 11386 climuni 11439 mulcn2 11458 reccn2ap 11459 cn1lem 11460 climcvg1nlem 11495 fsumparts 11616 arisum2 11645 geosergap 11652 geo2sum2 11661 geoisum1c 11666 cvgratnnlemrate 11676 sinval 11848 sinf 11850 tanval2ap 11859 tanval3ap 11860 sinneg 11872 efival 11878 cos12dec 11914 pythagtriplem1 12406 pythagtriplem14 12418 pythagtriplem16 12420 pythagtriplem17 12421 dvdsprmpweqle 12478 4sqlem5 12523 mul4sqlem 12534 4sqlem17 12548 addcncntoplem 14740 mulcncflem 14786 cnopnap 14790 limcimolemlt 14843 limcimo 14844 cnplimclemle 14847 limccnp2lem 14855 dvlemap 14859 dvconst 14873 dvid 14874 dvconstre 14875 dvidre 14876 dvconstss 14877 dvcnp2cntop 14878 dvaddxxbr 14880 dvmulxxbr 14881 dvcoapbr 14886 dvcjbr 14887 dvrecap 14892 dveflem 14905 dvef 14906 sin0pilem1 14957 ptolemy 15000 tangtx 15014 cosq34lt1 15026 lgsdirprm 15191 gausslemma2dlem1a 15215 qdencn 15587 trirec0 15604 apdifflemf 15606 apdifflemr 15607 apdiff 15608 |
Copyright terms: Public domain | W3C validator |