![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subcld | GIF version |
Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
subcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subcl 7679 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 403 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1438 (class class class)co 5652 ℂcc 7346 − cmin 7651 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-setind 4353 ax-resscn 7435 ax-1cn 7436 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-addcom 7443 ax-addass 7445 ax-distr 7447 ax-i2m1 7448 ax-0id 7451 ax-rnegex 7452 ax-cnre 7454 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-iota 4980 df-fun 5017 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-sub 7653 |
This theorem is referenced by: pnpncand 7851 kcnktkm1cn 7859 muleqadd 8135 peano2zm 8786 peano5uzti 8852 modqmuladdnn0 9771 modsumfzodifsn 9799 hashfz 10225 hashfzo 10226 shftfvalg 10248 ovshftex 10249 shftfibg 10250 shftfval 10251 shftdm 10252 shftfib 10253 shftval 10255 2shfti 10261 crre 10287 remim 10290 remullem 10301 resqrexlemover 10439 resqrexlemcalc1 10443 abssubne0 10520 abs3lem 10540 caubnd2 10546 maxabslemlub 10636 maxabslemval 10637 maxcl 10639 climuni 10677 mulcn2 10697 cn1lem 10698 climcvg1nlem 10734 fsumparts 10860 arisum2 10889 geosergap 10896 geo2sum2 10905 geoisum1c 10910 cvgratnnlemrate 10920 sinval 10989 sinf 10991 tanval2ap 11000 tanval3ap 11001 sinneg 11013 efival 11019 qdencn 11870 |
Copyright terms: Public domain | W3C validator |