| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcld | GIF version | ||
| Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subcl 8306 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 (class class class)co 5967 ℂcc 7958 − cmin 8278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 |
| This theorem is referenced by: pnpncand 8482 kcnktkm1cn 8490 muleqadd 8776 ofnegsub 9070 peano2zm 9445 peano5uzti 9516 modqmuladdnn0 10550 modsumfzodifsn 10578 hashfz 11003 hashfzo 11004 ccatswrd 11161 pfxccatin12lem2 11222 shftfvalg 11244 ovshftex 11245 shftfibg 11246 shftfval 11247 shftdm 11248 shftfib 11249 shftval 11251 2shfti 11257 crre 11283 remim 11286 remullem 11297 resqrexlemover 11436 resqrexlemcalc1 11440 abssubne0 11517 abs3lem 11537 caubnd2 11543 maxabslemlub 11633 maxabslemval 11634 maxcl 11636 minabs 11662 bdtrilem 11665 bdtri 11666 climuni 11719 mulcn2 11738 reccn2ap 11739 cn1lem 11740 climcvg1nlem 11775 fsumparts 11896 arisum2 11925 geosergap 11932 geo2sum2 11941 geoisum1c 11946 cvgratnnlemrate 11956 sinval 12128 sinf 12130 tanval2ap 12139 tanval3ap 12140 sinneg 12152 efival 12158 cos12dec 12194 bitsinv1lem 12387 pythagtriplem1 12703 pythagtriplem14 12715 pythagtriplem16 12717 pythagtriplem17 12718 dvdsprmpweqle 12775 4sqlem5 12820 mul4sqlem 12831 4sqlem17 12845 addcncntoplem 15148 mulcncflem 15194 cnopnap 15198 limcimolemlt 15251 limcimo 15252 cnplimclemle 15255 limccnp2lem 15263 dvlemap 15267 dvconst 15281 dvid 15282 dvconstre 15283 dvidre 15284 dvconstss 15285 dvcnp2cntop 15286 dvaddxxbr 15288 dvmulxxbr 15289 dvcoapbr 15294 dvcjbr 15295 dvrecap 15300 dveflem 15313 dvef 15314 sin0pilem1 15368 ptolemy 15411 tangtx 15425 cosq34lt1 15437 lgsdirprm 15626 gausslemma2dlem1a 15650 qdencn 16168 trirec0 16185 apdifflemf 16187 apdifflemr 16188 apdiff 16189 |
| Copyright terms: Public domain | W3C validator |