| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcld | GIF version | ||
| Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subcl 8271 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 (class class class)co 5944 ℂcc 7923 − cmin 8243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 |
| This theorem is referenced by: pnpncand 8447 kcnktkm1cn 8455 muleqadd 8741 ofnegsub 9035 peano2zm 9410 peano5uzti 9481 modqmuladdnn0 10513 modsumfzodifsn 10541 hashfz 10966 hashfzo 10967 ccatswrd 11123 shftfvalg 11129 ovshftex 11130 shftfibg 11131 shftfval 11132 shftdm 11133 shftfib 11134 shftval 11136 2shfti 11142 crre 11168 remim 11171 remullem 11182 resqrexlemover 11321 resqrexlemcalc1 11325 abssubne0 11402 abs3lem 11422 caubnd2 11428 maxabslemlub 11518 maxabslemval 11519 maxcl 11521 minabs 11547 bdtrilem 11550 bdtri 11551 climuni 11604 mulcn2 11623 reccn2ap 11624 cn1lem 11625 climcvg1nlem 11660 fsumparts 11781 arisum2 11810 geosergap 11817 geo2sum2 11826 geoisum1c 11831 cvgratnnlemrate 11841 sinval 12013 sinf 12015 tanval2ap 12024 tanval3ap 12025 sinneg 12037 efival 12043 cos12dec 12079 bitsinv1lem 12272 pythagtriplem1 12588 pythagtriplem14 12600 pythagtriplem16 12602 pythagtriplem17 12603 dvdsprmpweqle 12660 4sqlem5 12705 mul4sqlem 12716 4sqlem17 12730 addcncntoplem 15033 mulcncflem 15079 cnopnap 15083 limcimolemlt 15136 limcimo 15137 cnplimclemle 15140 limccnp2lem 15148 dvlemap 15152 dvconst 15166 dvid 15167 dvconstre 15168 dvidre 15169 dvconstss 15170 dvcnp2cntop 15171 dvaddxxbr 15173 dvmulxxbr 15174 dvcoapbr 15179 dvcjbr 15180 dvrecap 15185 dveflem 15198 dvef 15199 sin0pilem1 15253 ptolemy 15296 tangtx 15310 cosq34lt1 15322 lgsdirprm 15511 gausslemma2dlem1a 15535 qdencn 15966 trirec0 15983 apdifflemf 15985 apdifflemr 15986 apdiff 15987 |
| Copyright terms: Public domain | W3C validator |