| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcld | GIF version | ||
| Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subcl 8244 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 − cmin 8216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8218 |
| This theorem is referenced by: pnpncand 8420 kcnktkm1cn 8428 muleqadd 8714 ofnegsub 9008 peano2zm 9383 peano5uzti 9453 modqmuladdnn0 10479 modsumfzodifsn 10507 hashfz 10932 hashfzo 10933 shftfvalg 11002 ovshftex 11003 shftfibg 11004 shftfval 11005 shftdm 11006 shftfib 11007 shftval 11009 2shfti 11015 crre 11041 remim 11044 remullem 11055 resqrexlemover 11194 resqrexlemcalc1 11198 abssubne0 11275 abs3lem 11295 caubnd2 11301 maxabslemlub 11391 maxabslemval 11392 maxcl 11394 minabs 11420 bdtrilem 11423 bdtri 11424 climuni 11477 mulcn2 11496 reccn2ap 11497 cn1lem 11498 climcvg1nlem 11533 fsumparts 11654 arisum2 11683 geosergap 11690 geo2sum2 11699 geoisum1c 11704 cvgratnnlemrate 11714 sinval 11886 sinf 11888 tanval2ap 11897 tanval3ap 11898 sinneg 11910 efival 11916 cos12dec 11952 bitsinv1lem 12145 pythagtriplem1 12461 pythagtriplem14 12473 pythagtriplem16 12475 pythagtriplem17 12476 dvdsprmpweqle 12533 4sqlem5 12578 mul4sqlem 12589 4sqlem17 12603 addcncntoplem 14905 mulcncflem 14951 cnopnap 14955 limcimolemlt 15008 limcimo 15009 cnplimclemle 15012 limccnp2lem 15020 dvlemap 15024 dvconst 15038 dvid 15039 dvconstre 15040 dvidre 15041 dvconstss 15042 dvcnp2cntop 15043 dvaddxxbr 15045 dvmulxxbr 15046 dvcoapbr 15051 dvcjbr 15052 dvrecap 15057 dveflem 15070 dvef 15071 sin0pilem1 15125 ptolemy 15168 tangtx 15182 cosq34lt1 15194 lgsdirprm 15383 gausslemma2dlem1a 15407 qdencn 15784 trirec0 15801 apdifflemf 15803 apdifflemr 15804 apdiff 15805 |
| Copyright terms: Public domain | W3C validator |