| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subcld | GIF version | ||
| Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subcl 8341 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 − cmin 8313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 |
| This theorem is referenced by: pnpncand 8517 kcnktkm1cn 8525 muleqadd 8811 ofnegsub 9105 peano2zm 9480 peano5uzti 9551 modqmuladdnn0 10585 modsumfzodifsn 10613 hashfz 11038 hashfzo 11039 ccatswrd 11197 pfxccatin12lem2 11258 shftfvalg 11324 ovshftex 11325 shftfibg 11326 shftfval 11327 shftdm 11328 shftfib 11329 shftval 11331 2shfti 11337 crre 11363 remim 11366 remullem 11377 resqrexlemover 11516 resqrexlemcalc1 11520 abssubne0 11597 abs3lem 11617 caubnd2 11623 maxabslemlub 11713 maxabslemval 11714 maxcl 11716 minabs 11742 bdtrilem 11745 bdtri 11746 climuni 11799 mulcn2 11818 reccn2ap 11819 cn1lem 11820 climcvg1nlem 11855 fsumparts 11976 arisum2 12005 geosergap 12012 geo2sum2 12021 geoisum1c 12026 cvgratnnlemrate 12036 sinval 12208 sinf 12210 tanval2ap 12219 tanval3ap 12220 sinneg 12232 efival 12238 cos12dec 12274 bitsinv1lem 12467 pythagtriplem1 12783 pythagtriplem14 12795 pythagtriplem16 12797 pythagtriplem17 12798 dvdsprmpweqle 12855 4sqlem5 12900 mul4sqlem 12911 4sqlem17 12925 addcncntoplem 15229 mulcncflem 15275 cnopnap 15279 limcimolemlt 15332 limcimo 15333 cnplimclemle 15336 limccnp2lem 15344 dvlemap 15348 dvconst 15362 dvid 15363 dvconstre 15364 dvidre 15365 dvconstss 15366 dvcnp2cntop 15367 dvaddxxbr 15369 dvmulxxbr 15370 dvcoapbr 15375 dvcjbr 15376 dvrecap 15381 dveflem 15394 dvef 15395 sin0pilem1 15449 ptolemy 15492 tangtx 15506 cosq34lt1 15518 lgsdirprm 15707 gausslemma2dlem1a 15731 qdencn 16354 trirec0 16371 apdifflemf 16373 apdifflemr 16374 apdiff 16375 |
| Copyright terms: Public domain | W3C validator |