Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subcld | GIF version |
Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
subcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subcl 8118 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 − cmin 8090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 |
This theorem is referenced by: pnpncand 8294 kcnktkm1cn 8302 muleqadd 8586 peano2zm 9250 peano5uzti 9320 modqmuladdnn0 10324 modsumfzodifsn 10352 hashfz 10756 hashfzo 10757 shftfvalg 10782 ovshftex 10783 shftfibg 10784 shftfval 10785 shftdm 10786 shftfib 10787 shftval 10789 2shfti 10795 crre 10821 remim 10824 remullem 10835 resqrexlemover 10974 resqrexlemcalc1 10978 abssubne0 11055 abs3lem 11075 caubnd2 11081 maxabslemlub 11171 maxabslemval 11172 maxcl 11174 minabs 11199 bdtrilem 11202 bdtri 11203 climuni 11256 mulcn2 11275 reccn2ap 11276 cn1lem 11277 climcvg1nlem 11312 fsumparts 11433 arisum2 11462 geosergap 11469 geo2sum2 11478 geoisum1c 11483 cvgratnnlemrate 11493 sinval 11665 sinf 11667 tanval2ap 11676 tanval3ap 11677 sinneg 11689 efival 11695 cos12dec 11730 pythagtriplem1 12219 pythagtriplem14 12231 pythagtriplem16 12233 pythagtriplem17 12234 dvdsprmpweqle 12290 4sqlem5 12334 mul4sqlem 12345 addcncntoplem 13345 mulcncflem 13384 cnopnap 13388 limcimolemlt 13427 limcimo 13428 cnplimclemle 13431 limccnp2lem 13439 dvlemap 13443 dvconst 13455 dvid 13456 dvcnp2cntop 13457 dvaddxxbr 13459 dvmulxxbr 13460 dvcoapbr 13465 dvcjbr 13466 dvrecap 13471 dveflem 13481 dvef 13482 sin0pilem1 13496 ptolemy 13539 tangtx 13553 cosq34lt1 13565 lgsdirprm 13729 qdencn 14059 trirec0 14076 apdifflemf 14078 apdifflemr 14079 apdiff 14080 |
Copyright terms: Public domain | W3C validator |