Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subcld | GIF version |
Description: Closure law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
subcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subcl 8093 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 (class class class)co 5841 ℂcc 7747 − cmin 8065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-setind 4513 ax-resscn 7841 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-sub 8067 |
This theorem is referenced by: pnpncand 8269 kcnktkm1cn 8277 muleqadd 8561 peano2zm 9225 peano5uzti 9295 modqmuladdnn0 10299 modsumfzodifsn 10327 hashfz 10730 hashfzo 10731 shftfvalg 10756 ovshftex 10757 shftfibg 10758 shftfval 10759 shftdm 10760 shftfib 10761 shftval 10763 2shfti 10769 crre 10795 remim 10798 remullem 10809 resqrexlemover 10948 resqrexlemcalc1 10952 abssubne0 11029 abs3lem 11049 caubnd2 11055 maxabslemlub 11145 maxabslemval 11146 maxcl 11148 minabs 11173 bdtrilem 11176 bdtri 11177 climuni 11230 mulcn2 11249 reccn2ap 11250 cn1lem 11251 climcvg1nlem 11286 fsumparts 11407 arisum2 11436 geosergap 11443 geo2sum2 11452 geoisum1c 11457 cvgratnnlemrate 11467 sinval 11639 sinf 11641 tanval2ap 11650 tanval3ap 11651 sinneg 11663 efival 11669 cos12dec 11704 pythagtriplem1 12193 pythagtriplem14 12205 pythagtriplem16 12207 pythagtriplem17 12208 dvdsprmpweqle 12264 4sqlem5 12308 mul4sqlem 12319 addcncntoplem 13151 mulcncflem 13190 cnopnap 13194 limcimolemlt 13233 limcimo 13234 cnplimclemle 13237 limccnp2lem 13245 dvlemap 13249 dvconst 13261 dvid 13262 dvcnp2cntop 13263 dvaddxxbr 13265 dvmulxxbr 13266 dvcoapbr 13271 dvcjbr 13272 dvrecap 13277 dveflem 13287 dvef 13288 sin0pilem1 13302 ptolemy 13345 tangtx 13359 cosq34lt1 13371 lgsdirprm 13535 qdencn 13866 trirec0 13883 apdifflemf 13885 apdifflemr 13886 apdiff 13887 |
Copyright terms: Public domain | W3C validator |