| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidlex | GIF version | ||
| Description: Existence of the set of left ideals. (Contributed by Jim Kingdon, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| lidlex | ⊢ (𝑊 ∈ 𝑉 → (LIdeal‘𝑊) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlvalg 14420 | . 2 ⊢ (𝑊 ∈ 𝑉 → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) | |
| 2 | rlmfn 14402 | . . . 4 ⊢ ringLMod Fn V | |
| 3 | elex 2811 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
| 4 | funfvex 5640 | . . . . 5 ⊢ ((Fun ringLMod ∧ 𝑊 ∈ dom ringLMod) → (ringLMod‘𝑊) ∈ V) | |
| 5 | 4 | funfni 5419 | . . . 4 ⊢ ((ringLMod Fn V ∧ 𝑊 ∈ V) → (ringLMod‘𝑊) ∈ V) |
| 6 | 2, 3, 5 | sylancr 414 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (ringLMod‘𝑊) ∈ V) |
| 7 | lssex 14303 | . . 3 ⊢ ((ringLMod‘𝑊) ∈ V → (LSubSp‘(ringLMod‘𝑊)) ∈ V) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ (𝑊 ∈ 𝑉 → (LSubSp‘(ringLMod‘𝑊)) ∈ V) |
| 9 | 1, 8 | eqeltrd 2306 | 1 ⊢ (𝑊 ∈ 𝑉 → (LIdeal‘𝑊) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 Fn wfn 5309 ‘cfv 5314 LSubSpclss 14301 ringLModcrglmod 14383 LIdealclidl 14416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-mulr 13110 df-sca 13112 df-vsca 13113 df-ip 13114 df-lssm 14302 df-sra 14384 df-rgmod 14385 df-lidl 14418 |
| This theorem is referenced by: 2idlval 14451 2idlvalg 14452 |
| Copyright terms: Public domain | W3C validator |