ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2subd GIF version

Theorem lt2subd 8330
Description: Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
lt2addd.4 (𝜑𝐷 ∈ ℝ)
lt2addd.5 (𝜑𝐴 < 𝐶)
lt2addd.6 (𝜑𝐵 < 𝐷)
Assertion
Ref Expression
lt2subd (𝜑 → (𝐴𝐷) < (𝐶𝐵))

Proof of Theorem lt2subd
StepHypRef Expression
1 lt2addd.5 . 2 (𝜑𝐴 < 𝐶)
2 lt2addd.6 . 2 (𝜑𝐵 < 𝐷)
3 leidd.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 lt2addd.4 . . 3 (𝜑𝐷 ∈ ℝ)
5 ltadd1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
6 ltnegd.2 . . 3 (𝜑𝐵 ∈ ℝ)
7 lt2sub 8222 . . 3 (((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴𝐷) < (𝐶𝐵)))
83, 4, 5, 6, 7syl22anc 1217 . 2 (𝜑 → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴𝐷) < (𝐶𝐵)))
91, 2, 8mp2and 429 1 (𝜑 → (𝐴𝐷) < (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7619   < clt 7800  cmin 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-ltxr 7805  df-sub 7935  df-neg 7936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator