Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pcprendvds2 | GIF version |
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) |
Ref | Expression |
---|---|
pcprendvds2 | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclem.1 | . . 3 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
2 | pclem.2 | . . 3 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
3 | 1, 2 | pcprendvds 12244 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) |
4 | eluz2nn 9525 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ) | |
5 | 4 | adantr 274 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℕ) |
6 | 5 | nnzd 9333 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℤ) |
7 | 1, 2 | pcprecl 12243 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
8 | 7 | simprd 113 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∥ 𝑁) |
9 | 7 | simpld 111 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0) |
10 | 5, 9 | nnexpcld 10631 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℕ) |
11 | 10 | nnzd 9333 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℤ) |
12 | 10 | nnne0d 8923 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ≠ 0) |
13 | simprl 526 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ) | |
14 | dvdsval2 11752 | . . . . . 6 ⊢ (((𝑃↑𝑆) ∈ ℤ ∧ (𝑃↑𝑆) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑𝑆) ∥ 𝑁 ↔ (𝑁 / (𝑃↑𝑆)) ∈ ℤ)) | |
15 | 11, 12, 13, 14 | syl3anc 1233 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) ∥ 𝑁 ↔ (𝑁 / (𝑃↑𝑆)) ∈ ℤ)) |
16 | 8, 15 | mpbid 146 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 / (𝑃↑𝑆)) ∈ ℤ) |
17 | dvdscmul 11780 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑𝑆)) ∈ ℤ ∧ (𝑃↑𝑆) ∈ ℤ) → (𝑃 ∥ (𝑁 / (𝑃↑𝑆)) → ((𝑃↑𝑆) · 𝑃) ∥ ((𝑃↑𝑆) · (𝑁 / (𝑃↑𝑆))))) | |
18 | 6, 16, 11, 17 | syl3anc 1233 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ (𝑁 / (𝑃↑𝑆)) → ((𝑃↑𝑆) · 𝑃) ∥ ((𝑃↑𝑆) · (𝑁 / (𝑃↑𝑆))))) |
19 | 5 | nncnd 8892 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℂ) |
20 | 19, 9 | expp1d 10610 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 1)) = ((𝑃↑𝑆) · 𝑃)) |
21 | 20 | eqcomd 2176 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) · 𝑃) = (𝑃↑(𝑆 + 1))) |
22 | zcn 9217 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
23 | 22 | ad2antrl 487 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℂ) |
24 | 10 | nncnd 8892 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℂ) |
25 | 10 | nnap0d 8924 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) # 0) |
26 | 23, 24, 25 | divcanap2d 8709 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) · (𝑁 / (𝑃↑𝑆))) = 𝑁) |
27 | 21, 26 | breq12d 4002 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑𝑆) · 𝑃) ∥ ((𝑃↑𝑆) · (𝑁 / (𝑃↑𝑆))) ↔ (𝑃↑(𝑆 + 1)) ∥ 𝑁)) |
28 | 18, 27 | sylibd 148 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ (𝑁 / (𝑃↑𝑆)) → (𝑃↑(𝑆 + 1)) ∥ 𝑁)) |
29 | 3, 28 | mtod 658 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑆))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 {crab 2452 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 supcsup 6959 ℂcc 7772 ℝcr 7773 0cc0 7774 1c1 7775 + caddc 7777 · cmul 7779 < clt 7954 / cdiv 8589 ℕcn 8878 2c2 8929 ℕ0cn0 9135 ℤcz 9212 ℤ≥cuz 9487 ↑cexp 10475 ∥ cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-dvds 11750 |
This theorem is referenced by: pcpremul 12247 pczndvds2 12271 |
Copyright terms: Public domain | W3C validator |