ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprendvds2 GIF version

Theorem pcprendvds2 12274
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
pclem.2 𝑆 = sup(𝐴, ℝ, < )
Assertion
Ref Expression
pcprendvds2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃𝑆)))
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑆(𝑛)

Proof of Theorem pcprendvds2
StepHypRef Expression
1 pclem.1 . . 3 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
2 pclem.2 . . 3 𝑆 = sup(𝐴, ℝ, < )
31, 2pcprendvds 12273 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁)
4 eluz2nn 9555 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
54adantr 276 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℕ)
65nnzd 9363 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℤ)
71, 2pcprecl 12272 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
87simprd 114 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ∥ 𝑁)
97simpld 112 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
105, 9nnexpcld 10661 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ∈ ℕ)
1110nnzd 9363 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ∈ ℤ)
1210nnne0d 8953 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ≠ 0)
13 simprl 529 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ)
14 dvdsval2 11781 . . . . . 6 (((𝑃𝑆) ∈ ℤ ∧ (𝑃𝑆) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃𝑆) ∥ 𝑁 ↔ (𝑁 / (𝑃𝑆)) ∈ ℤ))
1511, 12, 13, 14syl3anc 1238 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑆) ∥ 𝑁 ↔ (𝑁 / (𝑃𝑆)) ∈ ℤ))
168, 15mpbid 147 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 / (𝑃𝑆)) ∈ ℤ)
17 dvdscmul 11809 . . . 4 ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃𝑆)) ∈ ℤ ∧ (𝑃𝑆) ∈ ℤ) → (𝑃 ∥ (𝑁 / (𝑃𝑆)) → ((𝑃𝑆) · 𝑃) ∥ ((𝑃𝑆) · (𝑁 / (𝑃𝑆)))))
186, 16, 11, 17syl3anc 1238 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ (𝑁 / (𝑃𝑆)) → ((𝑃𝑆) · 𝑃) ∥ ((𝑃𝑆) · (𝑁 / (𝑃𝑆)))))
195nncnd 8922 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℂ)
2019, 9expp1d 10640 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 1)) = ((𝑃𝑆) · 𝑃))
2120eqcomd 2183 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑆) · 𝑃) = (𝑃↑(𝑆 + 1)))
22 zcn 9247 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2322ad2antrl 490 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℂ)
2410nncnd 8922 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ∈ ℂ)
2510nnap0d 8954 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) # 0)
2623, 24, 25divcanap2d 8738 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑆) · (𝑁 / (𝑃𝑆))) = 𝑁)
2721, 26breq12d 4013 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃𝑆) · 𝑃) ∥ ((𝑃𝑆) · (𝑁 / (𝑃𝑆))) ↔ (𝑃↑(𝑆 + 1)) ∥ 𝑁))
2818, 27sylibd 149 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ (𝑁 / (𝑃𝑆)) → (𝑃↑(𝑆 + 1)) ∥ 𝑁))
293, 28mtod 663 1 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃𝑆)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wne 2347  {crab 2459   class class class wbr 4000  cfv 5212  (class class class)co 5869  supcsup 6975  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982   / cdiv 8618  cn 8908  2c2 8959  0cn0 9165  cz 9242  cuz 9517  cexp 10505  cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779
This theorem is referenced by:  pcpremul  12276  pczndvds2  12300
  Copyright terms: Public domain W3C validator