ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul02lem2 GIF version

Theorem mul02lem2 8473
Description: Zero times a real is zero. Although we prove it as a corollary of mul02 8472, the name is for consistency with the Metamath Proof Explorer which proves it before mul02 8472. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem2 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)

Proof of Theorem mul02lem2
StepHypRef Expression
1 recn 8071 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 mul02 8472 . 2 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
31, 2syl 14 1 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  (class class class)co 5954  cc 7936  cr 7937  0cc0 7938   · cmul 7943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-setind 4590  ax-resscn 8030  ax-1cn 8031  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-iota 5238  df-fun 5279  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-sub 8258
This theorem is referenced by:  trirec0xor  16099
  Copyright terms: Public domain W3C validator