ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2f1odc GIF version

Theorem pw2f1odc 6905
Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypotheses
Ref Expression
pw2f1o.1 (𝜑𝐴𝑉)
pw2f1o.2 (𝜑𝐵𝑊)
pw2f1o.3 (𝜑𝐶𝑊)
pw2f1o.4 (𝜑𝐵𝐶)
pw2f1odc.4 (𝜑 → ∀𝑝𝐴𝑞 ∈ 𝒫 𝐴DECID 𝑝𝑞)
pw2f1o.5 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))
Assertion
Ref Expression
pw2f1odc (𝜑𝐹:𝒫 𝐴1-1-onto→({𝐵, 𝐶} ↑𝑚 𝐴))
Distinct variable groups:   𝐴,𝑝,𝑞,𝑥   𝑧,𝐴,𝑥   𝑥,𝐵,𝑧   𝑥,𝐶,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑞,𝑝)   𝐵(𝑞,𝑝)   𝐶(𝑞,𝑝)   𝐹(𝑥,𝑧,𝑞,𝑝)   𝑉(𝑥,𝑧,𝑞,𝑝)   𝑊(𝑥,𝑧,𝑞,𝑝)

Proof of Theorem pw2f1odc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pw2f1o.5 . 2 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))
2 eqid 2196 . . . 4 (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))
3 pw2f1o.1 . . . . . 6 (𝜑𝐴𝑉)
4 pw2f1o.2 . . . . . 6 (𝜑𝐵𝑊)
5 pw2f1o.3 . . . . . 6 (𝜑𝐶𝑊)
6 pw2f1o.4 . . . . . 6 (𝜑𝐵𝐶)
7 pw2f1odc.4 . . . . . 6 (𝜑 → ∀𝑝𝐴𝑞 ∈ 𝒫 𝐴DECID 𝑝𝑞)
83, 4, 5, 6, 7pw2f1odclem 6904 . . . . 5 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))) ↔ ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶}))))
98biimpa 296 . . . 4 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))) → ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶})))
102, 9mpanr2 438 . . 3 ((𝜑𝑥 ∈ 𝒫 𝐴) → ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶})))
1110simpld 112 . 2 ((𝜑𝑥 ∈ 𝒫 𝐴) → (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑𝑚 𝐴))
12 vex 2766 . . . . 5 𝑦 ∈ V
1312cnvex 5209 . . . 4 𝑦 ∈ V
1413imaex 5025 . . 3 (𝑦 “ {𝐶}) ∈ V
1514a1i 9 . 2 ((𝜑𝑦 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴)) → (𝑦 “ {𝐶}) ∈ V)
163, 4, 5, 6, 7pw2f1odclem 6904 . 2 (𝜑 → ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))) ↔ (𝑦 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑥 = (𝑦 “ {𝐶}))))
171, 11, 15, 16f1od 6130 1 (𝜑𝐹:𝒫 𝐴1-1-onto→({𝐵, 𝐶} ↑𝑚 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  Vcvv 2763  ifcif 3562  𝒫 cpw 3606  {csn 3623  {cpr 3624  cmpt 4095  ccnv 4663  cima 4667  1-1-ontowf1o 5258  (class class class)co 5925  𝑚 cmap 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-map 6718
This theorem is referenced by:  exmidpw2en  6982
  Copyright terms: Public domain W3C validator