ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2f1odc GIF version

Theorem pw2f1odc 6957
Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypotheses
Ref Expression
pw2f1o.1 (𝜑𝐴𝑉)
pw2f1o.2 (𝜑𝐵𝑊)
pw2f1o.3 (𝜑𝐶𝑊)
pw2f1o.4 (𝜑𝐵𝐶)
pw2f1odc.4 (𝜑 → ∀𝑝𝐴𝑞 ∈ 𝒫 𝐴DECID 𝑝𝑞)
pw2f1o.5 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))
Assertion
Ref Expression
pw2f1odc (𝜑𝐹:𝒫 𝐴1-1-onto→({𝐵, 𝐶} ↑𝑚 𝐴))
Distinct variable groups:   𝐴,𝑝,𝑞,𝑥   𝑧,𝐴,𝑥   𝑥,𝐵,𝑧   𝑥,𝐶,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑞,𝑝)   𝐵(𝑞,𝑝)   𝐶(𝑞,𝑝)   𝐹(𝑥,𝑧,𝑞,𝑝)   𝑉(𝑥,𝑧,𝑞,𝑝)   𝑊(𝑥,𝑧,𝑞,𝑝)

Proof of Theorem pw2f1odc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pw2f1o.5 . 2 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))
2 eqid 2207 . . . 4 (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))
3 pw2f1o.1 . . . . . 6 (𝜑𝐴𝑉)
4 pw2f1o.2 . . . . . 6 (𝜑𝐵𝑊)
5 pw2f1o.3 . . . . . 6 (𝜑𝐶𝑊)
6 pw2f1o.4 . . . . . 6 (𝜑𝐵𝐶)
7 pw2f1odc.4 . . . . . 6 (𝜑 → ∀𝑝𝐴𝑞 ∈ 𝒫 𝐴DECID 𝑝𝑞)
83, 4, 5, 6, 7pw2f1odclem 6956 . . . . 5 (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))) ↔ ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶}))))
98biimpa 296 . . . 4 ((𝜑 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))) → ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶})))
102, 9mpanr2 438 . . 3 ((𝜑𝑥 ∈ 𝒫 𝐴) → ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑥 = ((𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) “ {𝐶})))
1110simpld 112 . 2 ((𝜑𝑥 ∈ 𝒫 𝐴) → (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑𝑚 𝐴))
12 vex 2779 . . . . 5 𝑦 ∈ V
1312cnvex 5240 . . . 4 𝑦 ∈ V
1413imaex 5056 . . 3 (𝑦 “ {𝐶}) ∈ V
1514a1i 9 . 2 ((𝜑𝑦 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴)) → (𝑦 “ {𝐶}) ∈ V)
163, 4, 5, 6, 7pw2f1odclem 6956 . 2 (𝜑 → ((𝑥 ∈ 𝒫 𝐴𝑦 = (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵))) ↔ (𝑦 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑥 = (𝑦 “ {𝐶}))))
171, 11, 15, 16f1od 6172 1 (𝜑𝐹:𝒫 𝐴1-1-onto→({𝐵, 𝐶} ↑𝑚 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2178  wne 2378  wral 2486  Vcvv 2776  ifcif 3579  𝒫 cpw 3626  {csn 3643  {cpr 3644  cmpt 4121  ccnv 4692  cima 4696  1-1-ontowf1o 5289  (class class class)co 5967  𝑚 cmap 6758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-map 6760
This theorem is referenced by:  exmidpw2en  7035
  Copyright terms: Public domain W3C validator