| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw2f1odc | GIF version | ||
| Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.) |
| Ref | Expression |
|---|---|
| pw2f1o.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| pw2f1o.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| pw2f1o.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| pw2f1o.4 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| pw2f1odc.4 | ⊢ (𝜑 → ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝒫 𝐴DECID 𝑝 ∈ 𝑞) |
| pw2f1o.5 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) |
| Ref | Expression |
|---|---|
| pw2f1odc | ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→({𝐵, 𝐶} ↑𝑚 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o.5 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) | |
| 2 | eqid 2205 | . . . 4 ⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) | |
| 3 | pw2f1o.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | pw2f1o.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | pw2f1o.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 6 | pw2f1o.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 7 | pw2f1odc.4 | . . . . . 6 ⊢ (𝜑 → ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝒫 𝐴DECID 𝑝 ∈ 𝑞) | |
| 8 | 3, 4, 5, 6, 7 | pw2f1odclem 6931 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) ↔ ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶})))) |
| 9 | 8 | biimpa 296 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝒫 𝐴 ∧ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)))) → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶}))) |
| 10 | 2, 9 | mpanr2 438 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑥 = (◡(𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) “ {𝐶}))) |
| 11 | 10 | simpld 112 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐴) → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵)) ∈ ({𝐵, 𝐶} ↑𝑚 𝐴)) |
| 12 | vex 2775 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 13 | 12 | cnvex 5221 | . . . 4 ⊢ ◡𝑦 ∈ V |
| 14 | 13 | imaex 5037 | . . 3 ⊢ (◡𝑦 “ {𝐶}) ∈ V |
| 15 | 14 | a1i 9 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴)) → (◡𝑦 “ {𝐶}) ∈ V) |
| 16 | 3, 4, 5, 6, 7 | pw2f1odclem 6931 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, 𝐶, 𝐵))) ↔ (𝑦 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑥 = (◡𝑦 “ {𝐶})))) |
| 17 | 1, 11, 15, 16 | f1od 6149 | 1 ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→({𝐵, 𝐶} ↑𝑚 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 836 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 ∀wral 2484 Vcvv 2772 ifcif 3571 𝒫 cpw 3616 {csn 3633 {cpr 3634 ↦ cmpt 4105 ◡ccnv 4674 “ cima 4678 –1-1-onto→wf1o 5270 (class class class)co 5944 ↑𝑚 cmap 6735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-map 6737 |
| This theorem is referenced by: exmidpw2en 7009 |
| Copyright terms: Public domain | W3C validator |