ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2f1odclem GIF version

Theorem pw2f1odclem 6938
Description: Lemma for pw2f1odc 6939. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypotheses
Ref Expression
pw2f1o.1 (𝜑𝐴𝑉)
pw2f1o.2 (𝜑𝐵𝑊)
pw2f1o.3 (𝜑𝐶𝑊)
pw2f1o.4 (𝜑𝐵𝐶)
pw2f1odc.4 (𝜑 → ∀𝑝𝐴𝑞 ∈ 𝒫 𝐴DECID 𝑝𝑞)
Assertion
Ref Expression
pw2f1odclem (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶}))))
Distinct variable groups:   𝐴,𝑝,𝑞   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑆,𝑞   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑧,𝑞,𝑝)   𝐵(𝑞,𝑝)   𝐶(𝑞,𝑝)   𝑆(𝑝)   𝐺(𝑧,𝑞,𝑝)   𝑉(𝑧,𝑞,𝑝)   𝑊(𝑧,𝑞,𝑝)

Proof of Theorem pw2f1odclem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pw2f1o.3 . . . . . . . . . 10 (𝜑𝐶𝑊)
2 prid2g 3739 . . . . . . . . . 10 (𝐶𝑊𝐶 ∈ {𝐵, 𝐶})
31, 2syl 14 . . . . . . . . 9 (𝜑𝐶 ∈ {𝐵, 𝐶})
43ad2antrr 488 . . . . . . . 8 (((𝜑𝑆𝐴) ∧ 𝑦𝐴) → 𝐶 ∈ {𝐵, 𝐶})
5 pw2f1o.2 . . . . . . . . . 10 (𝜑𝐵𝑊)
6 prid1g 3738 . . . . . . . . . 10 (𝐵𝑊𝐵 ∈ {𝐵, 𝐶})
75, 6syl 14 . . . . . . . . 9 (𝜑𝐵 ∈ {𝐵, 𝐶})
87ad2antrr 488 . . . . . . . 8 (((𝜑𝑆𝐴) ∧ 𝑦𝐴) → 𝐵 ∈ {𝐵, 𝐶})
9 eleq2 2270 . . . . . . . . . 10 (𝑞 = 𝑆 → (𝑦𝑞𝑦𝑆))
109dcbid 840 . . . . . . . . 9 (𝑞 = 𝑆 → (DECID 𝑦𝑞DECID 𝑦𝑆))
11 elequ1 2181 . . . . . . . . . . . 12 (𝑝 = 𝑦 → (𝑝𝑞𝑦𝑞))
1211dcbid 840 . . . . . . . . . . 11 (𝑝 = 𝑦 → (DECID 𝑝𝑞DECID 𝑦𝑞))
1312ralbidv 2507 . . . . . . . . . 10 (𝑝 = 𝑦 → (∀𝑞 ∈ 𝒫 𝐴DECID 𝑝𝑞 ↔ ∀𝑞 ∈ 𝒫 𝐴DECID 𝑦𝑞))
14 pw2f1odc.4 . . . . . . . . . . 11 (𝜑 → ∀𝑝𝐴𝑞 ∈ 𝒫 𝐴DECID 𝑝𝑞)
1514ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑆𝐴) ∧ 𝑦𝐴) → ∀𝑝𝐴𝑞 ∈ 𝒫 𝐴DECID 𝑝𝑞)
16 simpr 110 . . . . . . . . . 10 (((𝜑𝑆𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
1713, 15, 16rspcdva 2883 . . . . . . . . 9 (((𝜑𝑆𝐴) ∧ 𝑦𝐴) → ∀𝑞 ∈ 𝒫 𝐴DECID 𝑦𝑞)
18 simplr 528 . . . . . . . . . 10 (((𝜑𝑆𝐴) ∧ 𝑦𝐴) → 𝑆𝐴)
19 pw2f1o.1 . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
2019ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑆𝐴) ∧ 𝑦𝐴) → 𝐴𝑉)
2120, 18ssexd 4188 . . . . . . . . . . 11 (((𝜑𝑆𝐴) ∧ 𝑦𝐴) → 𝑆 ∈ V)
22 elpwg 3625 . . . . . . . . . . 11 (𝑆 ∈ V → (𝑆 ∈ 𝒫 𝐴𝑆𝐴))
2321, 22syl 14 . . . . . . . . . 10 (((𝜑𝑆𝐴) ∧ 𝑦𝐴) → (𝑆 ∈ 𝒫 𝐴𝑆𝐴))
2418, 23mpbird 167 . . . . . . . . 9 (((𝜑𝑆𝐴) ∧ 𝑦𝐴) → 𝑆 ∈ 𝒫 𝐴)
2510, 17, 24rspcdva 2883 . . . . . . . 8 (((𝜑𝑆𝐴) ∧ 𝑦𝐴) → DECID 𝑦𝑆)
264, 8, 25ifcldcd 3609 . . . . . . 7 (((𝜑𝑆𝐴) ∧ 𝑦𝐴) → if(𝑦𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
2726fmpttd 5742 . . . . . 6 ((𝜑𝑆𝐴) → (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶})
2827adantrr 479 . . . . 5 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶})
29 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
3029feq1d 5418 . . . . 5 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ↔ (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶}))
3128, 30mpbird 167 . . . 4 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝐺:𝐴⟶{𝐵, 𝐶})
32 iftrue 3577 . . . . . . . . 9 (𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) = 𝐶)
33 eleq2 2270 . . . . . . . . . . . 12 (𝑞 = 𝑆 → (𝑥𝑞𝑥𝑆))
3433dcbid 840 . . . . . . . . . . 11 (𝑞 = 𝑆 → (DECID 𝑥𝑞DECID 𝑥𝑆))
35 elequ1 2181 . . . . . . . . . . . . . 14 (𝑝 = 𝑥 → (𝑝𝑞𝑥𝑞))
3635dcbid 840 . . . . . . . . . . . . 13 (𝑝 = 𝑥 → (DECID 𝑝𝑞DECID 𝑥𝑞))
3736ralbidv 2507 . . . . . . . . . . . 12 (𝑝 = 𝑥 → (∀𝑞 ∈ 𝒫 𝐴DECID 𝑝𝑞 ↔ ∀𝑞 ∈ 𝒫 𝐴DECID 𝑥𝑞))
3814ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → ∀𝑝𝐴𝑞 ∈ 𝒫 𝐴DECID 𝑝𝑞)
39 simpr 110 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝑥𝐴)
4037, 38, 39rspcdva 2883 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → ∀𝑞 ∈ 𝒫 𝐴DECID 𝑥𝑞)
41 simplrl 535 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝑆𝐴)
4219ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝐴𝑉)
4342, 41ssexd 4188 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝑆 ∈ V)
4443, 22syl 14 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝑆 ∈ 𝒫 𝐴𝑆𝐴))
4541, 44mpbird 167 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝑆 ∈ 𝒫 𝐴)
4634, 40, 45rspcdva 2883 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → DECID 𝑥𝑆)
47 pw2f1o.4 . . . . . . . . . . . . . 14 (𝜑𝐵𝐶)
4847ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝐵𝐶)
49 iffalse 3580 . . . . . . . . . . . . . 14 𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) = 𝐵)
5049neeq1d 2395 . . . . . . . . . . . . 13 𝑥𝑆 → (if(𝑥𝑆, 𝐶, 𝐵) ≠ 𝐶𝐵𝐶))
5148, 50syl5ibrcom 157 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (¬ 𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) ≠ 𝐶))
5251a1d 22 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (DECID 𝑥𝑆 → (¬ 𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) ≠ 𝐶)))
5352necon4bddc 2448 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (DECID 𝑥𝑆 → (if(𝑥𝑆, 𝐶, 𝐵) = 𝐶𝑥𝑆)))
5446, 53mpd 13 . . . . . . . . 9 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (if(𝑥𝑆, 𝐶, 𝐵) = 𝐶𝑥𝑆))
5532, 54impbid2 143 . . . . . . . 8 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝑥𝑆 ↔ if(𝑥𝑆, 𝐶, 𝐵) = 𝐶))
56 simplrr 536 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
5756fveq1d 5585 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝐺𝑥) = ((𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))‘𝑥))
58 eqid 2206 . . . . . . . . . . 11 (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))
59 eleq1w 2267 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝑆𝑥𝑆))
6059ifbid 3593 . . . . . . . . . . 11 (𝑦 = 𝑥 → if(𝑦𝑆, 𝐶, 𝐵) = if(𝑥𝑆, 𝐶, 𝐵))
613ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝐶 ∈ {𝐵, 𝐶})
627ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝐵 ∈ {𝐵, 𝐶})
6361, 62, 46ifcldcd 3609 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → if(𝑥𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
6458, 60, 39, 63fvmptd3 5680 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → ((𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥𝑆, 𝐶, 𝐵))
6557, 64eqtrd 2239 . . . . . . . . 9 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝐺𝑥) = if(𝑥𝑆, 𝐶, 𝐵))
6665eqeq1d 2215 . . . . . . . 8 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → ((𝐺𝑥) = 𝐶 ↔ if(𝑥𝑆, 𝐶, 𝐵) = 𝐶))
6755, 66bitr4d 191 . . . . . . 7 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝑥𝑆 ↔ (𝐺𝑥) = 𝐶))
6867pm5.32da 452 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → ((𝑥𝐴𝑥𝑆) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 𝐶)))
69 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝑆𝐴)
7069sseld 3193 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥𝑆𝑥𝐴))
7170pm4.71rd 394 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥𝑆 ↔ (𝑥𝐴𝑥𝑆)))
72 ffn 5431 . . . . . . 7 (𝐺:𝐴⟶{𝐵, 𝐶} → 𝐺 Fn 𝐴)
73 fniniseg 5707 . . . . . . 7 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ {𝐶}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 𝐶)))
7431, 72, 733syl 17 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ (𝐺 “ {𝐶}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 𝐶)))
7568, 71, 743bitr4d 220 . . . . 5 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥𝑆𝑥 ∈ (𝐺 “ {𝐶})))
7675eqrdv 2204 . . . 4 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝑆 = (𝐺 “ {𝐶}))
7731, 76jca 306 . . 3 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶})))
78 simprr 531 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝑆 = (𝐺 “ {𝐶}))
79 cnvimass 5050 . . . . . 6 (𝐺 “ {𝐶}) ⊆ dom 𝐺
80 fdm 5437 . . . . . . 7 (𝐺:𝐴⟶{𝐵, 𝐶} → dom 𝐺 = 𝐴)
8180ad2antrl 490 . . . . . 6 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → dom 𝐺 = 𝐴)
8279, 81sseqtrid 3244 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝐺 “ {𝐶}) ⊆ 𝐴)
8378, 82eqsstrd 3230 . . . 4 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝑆𝐴)
8472ad2antrl 490 . . . . . 6 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺 Fn 𝐴)
85 dffn5im 5631 . . . . . 6 (𝐺 Fn 𝐴𝐺 = (𝑦𝐴 ↦ (𝐺𝑦)))
8684, 85syl 14 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺 = (𝑦𝐴 ↦ (𝐺𝑦)))
87 simplrr 536 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → 𝑆 = (𝐺 “ {𝐶}))
8887eleq2d 2276 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦𝑆𝑦 ∈ (𝐺 “ {𝐶})))
89 fniniseg 5707 . . . . . . . . . . . 12 (𝐺 Fn 𝐴 → (𝑦 ∈ (𝐺 “ {𝐶}) ↔ (𝑦𝐴 ∧ (𝐺𝑦) = 𝐶)))
9084, 89syl 14 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝑦 ∈ (𝐺 “ {𝐶}) ↔ (𝑦𝐴 ∧ (𝐺𝑦) = 𝐶)))
9190baibd 925 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦 ∈ (𝐺 “ {𝐶}) ↔ (𝐺𝑦) = 𝐶))
9288, 91bitrd 188 . . . . . . . . 9 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦𝑆 ↔ (𝐺𝑦) = 𝐶))
9392biimpa 296 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ 𝑦𝑆) → (𝐺𝑦) = 𝐶)
94 iftrue 3577 . . . . . . . . 9 (𝑦𝑆 → if(𝑦𝑆, 𝐶, 𝐵) = 𝐶)
9594adantl 277 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ 𝑦𝑆) → if(𝑦𝑆, 𝐶, 𝐵) = 𝐶)
9693, 95eqtr4d 2242 . . . . . . 7 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ 𝑦𝑆) → (𝐺𝑦) = if(𝑦𝑆, 𝐶, 𝐵))
9792notbid 669 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (¬ 𝑦𝑆 ↔ ¬ (𝐺𝑦) = 𝐶))
9897biimpa 296 . . . . . . . . 9 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → ¬ (𝐺𝑦) = 𝐶)
99 simprl 529 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺:𝐴⟶{𝐵, 𝐶})
10099ffvelcdmda 5722 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝐺𝑦) ∈ {𝐵, 𝐶})
101 elpri 3657 . . . . . . . . . . 11 ((𝐺𝑦) ∈ {𝐵, 𝐶} → ((𝐺𝑦) = 𝐵 ∨ (𝐺𝑦) = 𝐶))
102100, 101syl 14 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → ((𝐺𝑦) = 𝐵 ∨ (𝐺𝑦) = 𝐶))
103102adantr 276 . . . . . . . . 9 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → ((𝐺𝑦) = 𝐵 ∨ (𝐺𝑦) = 𝐶))
10498, 103ecased 1362 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → (𝐺𝑦) = 𝐵)
105 iffalse 3580 . . . . . . . . 9 𝑦𝑆 → if(𝑦𝑆, 𝐶, 𝐵) = 𝐵)
106105adantl 277 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → if(𝑦𝑆, 𝐶, 𝐵) = 𝐵)
107104, 106eqtr4d 2242 . . . . . . 7 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → (𝐺𝑦) = if(𝑦𝑆, 𝐶, 𝐵))
10883, 25syldanl 449 . . . . . . . 8 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → DECID 𝑦𝑆)
109 exmiddc 838 . . . . . . . 8 (DECID 𝑦𝑆 → (𝑦𝑆 ∨ ¬ 𝑦𝑆))
110108, 109syl 14 . . . . . . 7 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦𝑆 ∨ ¬ 𝑦𝑆))
11196, 107, 110mpjaodan 800 . . . . . 6 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝐺𝑦) = if(𝑦𝑆, 𝐶, 𝐵))
112111mpteq2dva 4138 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝑦𝐴 ↦ (𝐺𝑦)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
11386, 112eqtrd 2239 . . . 4 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
11483, 113jca 306 . . 3 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))))
11577, 114impbida 596 . 2 (𝜑 → ((𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))))
116 elpw2g 4204 . . . 4 (𝐴𝑉 → (𝑆 ∈ 𝒫 𝐴𝑆𝐴))
11719, 116syl 14 . . 3 (𝜑 → (𝑆 ∈ 𝒫 𝐴𝑆𝐴))
118 eleq1w 2267 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑆𝑦𝑆))
119118ifbid 3593 . . . . . 6 (𝑧 = 𝑦 → if(𝑧𝑆, 𝐶, 𝐵) = if(𝑦𝑆, 𝐶, 𝐵))
120119cbvmptv 4144 . . . . 5 (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))
121120a1i 9 . . . 4 (𝜑 → (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
122121eqeq2d 2218 . . 3 (𝜑 → (𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵)) ↔ 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))))
123117, 122anbi12d 473 . 2 (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))))
124 prexg 4259 . . . . 5 ((𝐵𝑊𝐶𝑊) → {𝐵, 𝐶} ∈ V)
1255, 1, 124syl2anc 411 . . . 4 (𝜑 → {𝐵, 𝐶} ∈ V)
126125, 19elmapd 6756 . . 3 (𝜑 → (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶}))
127126anbi1d 465 . 2 (𝜑 → ((𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶})) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))))
128115, 123, 1273bitr4d 220 1 (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶}))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wne 2377  wral 2485  Vcvv 2773  wss 3167  ifcif 3572  𝒫 cpw 3617  {csn 3634  {cpr 3635  cmpt 4109  ccnv 4678  dom cdm 4679  cima 4682   Fn wfn 5271  wf 5272  cfv 5276  (class class class)co 5951  𝑚 cmap 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-map 6744
This theorem is referenced by:  pw2f1odc  6939
  Copyright terms: Public domain W3C validator