Step | Hyp | Ref
| Expression |
1 | | pw2f1o.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ 𝑊) |
2 | | prid2g 3712 |
. . . . . . . . . 10
⊢ (𝐶 ∈ 𝑊 → 𝐶 ∈ {𝐵, 𝐶}) |
3 | 1, 2 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ {𝐵, 𝐶}) |
4 | 3 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐶 ∈ {𝐵, 𝐶}) |
5 | | pw2f1o.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
6 | | prid1g 3711 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵, 𝐶}) |
7 | 5, 6 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) |
8 | 7 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐵 ∈ {𝐵, 𝐶}) |
9 | | eleq2 2253 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑆 → (𝑦 ∈ 𝑞 ↔ 𝑦 ∈ 𝑆)) |
10 | 9 | dcbid 839 |
. . . . . . . . 9
⊢ (𝑞 = 𝑆 → (DECID 𝑦 ∈ 𝑞 ↔ DECID 𝑦 ∈ 𝑆)) |
11 | | elequ1 2164 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑦 → (𝑝 ∈ 𝑞 ↔ 𝑦 ∈ 𝑞)) |
12 | 11 | dcbid 839 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑦 → (DECID 𝑝 ∈ 𝑞 ↔ DECID 𝑦 ∈ 𝑞)) |
13 | 12 | ralbidv 2490 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑦 → (∀𝑞 ∈ 𝒫 𝐴DECID 𝑝 ∈ 𝑞 ↔ ∀𝑞 ∈ 𝒫 𝐴DECID 𝑦 ∈ 𝑞)) |
14 | | pw2f1odc.4 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝒫 𝐴DECID 𝑝 ∈ 𝑞) |
15 | 14 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐴) → ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝒫 𝐴DECID 𝑝 ∈ 𝑞) |
16 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
17 | 13, 15, 16 | rspcdva 2861 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐴) → ∀𝑞 ∈ 𝒫 𝐴DECID 𝑦 ∈ 𝑞) |
18 | | simplr 528 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑆 ⊆ 𝐴) |
19 | | pw2f1o.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
20 | 19 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐴 ∈ 𝑉) |
21 | 20, 18 | ssexd 4158 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑆 ∈ V) |
22 | | elpwg 3598 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ V → (𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴)) |
23 | 21, 22 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴)) |
24 | 18, 23 | mpbird 167 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑆 ∈ 𝒫 𝐴) |
25 | 10, 17, 24 | rspcdva 2861 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐴) → DECID 𝑦 ∈ 𝑆) |
26 | 4, 8, 25 | ifcldcd 3585 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑦 ∈ 𝐴) → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
27 | 26 | fmpttd 5692 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑆 ⊆ 𝐴) → (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶}) |
28 | 27 | adantrr 479 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶}) |
29 | | simprr 531 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
30 | 29 | feq1d 5371 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ↔ (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶})) |
31 | 28, 30 | mpbird 167 |
. . . 4
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝐺:𝐴⟶{𝐵, 𝐶}) |
32 | | iftrue 3554 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶) |
33 | | eleq2 2253 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑆 → (𝑥 ∈ 𝑞 ↔ 𝑥 ∈ 𝑆)) |
34 | 33 | dcbid 839 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑆 → (DECID 𝑥 ∈ 𝑞 ↔ DECID 𝑥 ∈ 𝑆)) |
35 | | elequ1 2164 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑥 → (𝑝 ∈ 𝑞 ↔ 𝑥 ∈ 𝑞)) |
36 | 35 | dcbid 839 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 𝑥 → (DECID 𝑝 ∈ 𝑞 ↔ DECID 𝑥 ∈ 𝑞)) |
37 | 36 | ralbidv 2490 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑥 → (∀𝑞 ∈ 𝒫 𝐴DECID 𝑝 ∈ 𝑞 ↔ ∀𝑞 ∈ 𝒫 𝐴DECID 𝑥 ∈ 𝑞)) |
38 | 14 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝒫 𝐴DECID 𝑝 ∈ 𝑞) |
39 | | simpr 110 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
40 | 37, 38, 39 | rspcdva 2861 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → ∀𝑞 ∈ 𝒫 𝐴DECID 𝑥 ∈ 𝑞) |
41 | | simplrl 535 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝑆 ⊆ 𝐴) |
42 | 19 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ 𝑉) |
43 | 42, 41 | ssexd 4158 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ V) |
44 | 43, 22 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴)) |
45 | 41, 44 | mpbird 167 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ 𝒫 𝐴) |
46 | 34, 40, 45 | rspcdva 2861 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → DECID 𝑥 ∈ 𝑆) |
47 | | pw2f1o.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
48 | 47 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ 𝐶) |
49 | | iffalse 3557 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐵) |
50 | 49 | neeq1d 2378 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 ∈ 𝑆 → (if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
51 | 48, 50 | syl5ibrcom 157 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ≠ 𝐶)) |
52 | 51 | a1d 22 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (DECID 𝑥 ∈ 𝑆 → (¬ 𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ≠ 𝐶))) |
53 | 52 | necon4bddc 2431 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (DECID 𝑥 ∈ 𝑆 → (if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶 → 𝑥 ∈ 𝑆))) |
54 | 46, 53 | mpd 13 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶 → 𝑥 ∈ 𝑆)) |
55 | 32, 54 | impbid2 143 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝑆 ↔ if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶)) |
56 | | simplrr 536 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
57 | 56 | fveq1d 5536 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = ((𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))‘𝑥)) |
58 | | eqid 2189 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
59 | | eleq1w 2250 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑆 ↔ 𝑥 ∈ 𝑆)) |
60 | 59 | ifbid 3570 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
61 | 3 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ {𝐵, 𝐶}) |
62 | 7 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {𝐵, 𝐶}) |
63 | 61, 62, 46 | ifcldcd 3585 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
64 | 58, 60, 39, 63 | fvmptd3 5630 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
65 | 57, 64 | eqtrd 2222 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
66 | 65 | eqeq1d 2198 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) = 𝐶 ↔ if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶)) |
67 | 55, 66 | bitr4d 191 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝑆 ↔ (𝐺‘𝑥) = 𝐶)) |
68 | 67 | pm5.32da 452 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑆) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 𝐶))) |
69 | | simprl 529 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝑆 ⊆ 𝐴) |
70 | 69 | sseld 3169 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐴)) |
71 | 70 | pm4.71rd 394 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑆))) |
72 | | ffn 5384 |
. . . . . . 7
⊢ (𝐺:𝐴⟶{𝐵, 𝐶} → 𝐺 Fn 𝐴) |
73 | | fniniseg 5657 |
. . . . . . 7
⊢ (𝐺 Fn 𝐴 → (𝑥 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 𝐶))) |
74 | 31, 72, 73 | 3syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 𝐶))) |
75 | 68, 71, 74 | 3bitr4d 220 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐺 “ {𝐶}))) |
76 | 75 | eqrdv 2187 |
. . . 4
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝑆 = (◡𝐺 “ {𝐶})) |
77 | 31, 76 | jca 306 |
. . 3
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) |
78 | | simprr 531 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝑆 = (◡𝐺 “ {𝐶})) |
79 | | cnvimass 5009 |
. . . . . 6
⊢ (◡𝐺 “ {𝐶}) ⊆ dom 𝐺 |
80 | | fdm 5390 |
. . . . . . 7
⊢ (𝐺:𝐴⟶{𝐵, 𝐶} → dom 𝐺 = 𝐴) |
81 | 80 | ad2antrl 490 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → dom 𝐺 = 𝐴) |
82 | 79, 81 | sseqtrid 3220 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (◡𝐺 “ {𝐶}) ⊆ 𝐴) |
83 | 78, 82 | eqsstrd 3206 |
. . . 4
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝑆 ⊆ 𝐴) |
84 | 72 | ad2antrl 490 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺 Fn 𝐴) |
85 | | dffn5im 5582 |
. . . . . 6
⊢ (𝐺 Fn 𝐴 → 𝐺 = (𝑦 ∈ 𝐴 ↦ (𝐺‘𝑦))) |
86 | 84, 85 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺 = (𝑦 ∈ 𝐴 ↦ (𝐺‘𝑦))) |
87 | | simplrr 536 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → 𝑆 = (◡𝐺 “ {𝐶})) |
88 | 87 | eleq2d 2259 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ 𝑆 ↔ 𝑦 ∈ (◡𝐺 “ {𝐶}))) |
89 | | fniniseg 5657 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn 𝐴 → (𝑦 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑦 ∈ 𝐴 ∧ (𝐺‘𝑦) = 𝐶))) |
90 | 84, 89 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (𝑦 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑦 ∈ 𝐴 ∧ (𝐺‘𝑦) = 𝐶))) |
91 | 90 | baibd 924 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ (◡𝐺 “ {𝐶}) ↔ (𝐺‘𝑦) = 𝐶)) |
92 | 88, 91 | bitrd 188 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ 𝑆 ↔ (𝐺‘𝑦) = 𝐶)) |
93 | 92 | biimpa 296 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = 𝐶) |
94 | | iftrue 3554 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑆 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐶) |
95 | 94 | adantl 277 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐶) |
96 | 93, 95 | eqtr4d 2225 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
97 | 92 | notbid 668 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑦 ∈ 𝑆 ↔ ¬ (𝐺‘𝑦) = 𝐶)) |
98 | 97 | biimpa 296 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → ¬ (𝐺‘𝑦) = 𝐶) |
99 | | simprl 529 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺:𝐴⟶{𝐵, 𝐶}) |
100 | 99 | ffvelcdmda 5672 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) ∈ {𝐵, 𝐶}) |
101 | | elpri 3630 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑦) ∈ {𝐵, 𝐶} → ((𝐺‘𝑦) = 𝐵 ∨ (𝐺‘𝑦) = 𝐶)) |
102 | 100, 101 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → ((𝐺‘𝑦) = 𝐵 ∨ (𝐺‘𝑦) = 𝐶)) |
103 | 102 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → ((𝐺‘𝑦) = 𝐵 ∨ (𝐺‘𝑦) = 𝐶)) |
104 | 98, 103 | ecased 1360 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = 𝐵) |
105 | | iffalse 3557 |
. . . . . . . . 9
⊢ (¬
𝑦 ∈ 𝑆 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐵) |
106 | 105 | adantl 277 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐵) |
107 | 104, 106 | eqtr4d 2225 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
108 | 83, 25 | syldanl 449 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → DECID 𝑦 ∈ 𝑆) |
109 | | exmiddc 837 |
. . . . . . . 8
⊢
(DECID 𝑦 ∈ 𝑆 → (𝑦 ∈ 𝑆 ∨ ¬ 𝑦 ∈ 𝑆)) |
110 | 108, 109 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ 𝑆 ∨ ¬ 𝑦 ∈ 𝑆)) |
111 | 96, 107, 110 | mpjaodan 799 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
112 | 111 | mpteq2dva 4108 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (𝑦 ∈ 𝐴 ↦ (𝐺‘𝑦)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
113 | 86, 112 | eqtrd 2222 |
. . . 4
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
114 | 83, 113 | jca 306 |
. . 3
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) |
115 | 77, 114 | impbida 596 |
. 2
⊢ (𝜑 → ((𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶})))) |
116 | | elpw2g 4174 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴)) |
117 | 19, 116 | syl 14 |
. . 3
⊢ (𝜑 → (𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴)) |
118 | | eleq1w 2250 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) |
119 | 118 | ifbid 3570 |
. . . . . 6
⊢ (𝑧 = 𝑦 → if(𝑧 ∈ 𝑆, 𝐶, 𝐵) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
120 | 119 | cbvmptv 4114 |
. . . . 5
⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
121 | 120 | a1i 9 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
122 | 121 | eqeq2d 2201 |
. . 3
⊢ (𝜑 → (𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵)) ↔ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) |
123 | 117, 122 | anbi12d 473 |
. 2
⊢ (𝜑 → ((𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))))) |
124 | | prexg 4229 |
. . . . 5
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑊) → {𝐵, 𝐶} ∈ V) |
125 | 5, 1, 124 | syl2anc 411 |
. . . 4
⊢ (𝜑 → {𝐵, 𝐶} ∈ V) |
126 | 125, 19 | elmapd 6689 |
. . 3
⊢ (𝜑 → (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶})) |
127 | 126 | anbi1d 465 |
. 2
⊢ (𝜑 → ((𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑆 = (◡𝐺 “ {𝐶})) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶})))) |
128 | 115, 123,
127 | 3bitr4d 220 |
1
⊢ (𝜑 → ((𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑆 = (◡𝐺 “ {𝐶})))) |