| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resubcl | GIF version | ||
| Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
| Ref | Expression |
|---|---|
| resubcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 8128 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 2 | recn 8128 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 3 | negsub 8390 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| 5 | renegcl 8403 | . . 3 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
| 6 | readdcl 8121 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) | |
| 7 | 5, 6 | sylan2 286 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) |
| 8 | 4, 7 | eqeltrrd 2307 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 ℝcr 7994 + caddc 7998 − cmin 8313 -cneg 8314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-neg 8316 |
| This theorem is referenced by: peano2rem 8409 resubcld 8523 posdif 8598 lt2sub 8603 le2sub 8604 cju 9104 elz2 9514 difrp 9884 iooshf 10144 iccshftl 10188 lincmb01cmp 10195 uzsubsubfz 10239 difelfzle 10326 fzonmapblen 10383 eluzgtdifelfzo 10398 subfzo0 10443 modfzo0difsn 10612 expubnd 10813 absdiflt 11598 absdifle 11599 elicc4abs 11600 abssubge0 11608 abs2difabs 11614 maxabsle 11710 resin4p 12224 recos4p 12225 cos01bnd 12264 cos01gt0 12269 pythagtriplem12 12793 pythagtriplem14 12795 pythagtriplem16 12797 fldivp1 12866 bl2ioo 15218 ioo2bl 15219 ioo2blex 15220 blssioo 15221 dich0 15320 sincosq1sgn 15494 sincosq2sgn 15495 sincosq3sgn 15496 sincosq4sgn 15497 sinq12gt0 15498 cosq14gt0 15500 tangtx 15506 relogdiv 15538 logdivlti 15549 gausslemma2dlem1a 15731 redc0 16384 reap0 16385 |
| Copyright terms: Public domain | W3C validator |