| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resubcl | GIF version | ||
| Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
| Ref | Expression |
|---|---|
| resubcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 8078 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 2 | recn 8078 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 3 | negsub 8340 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| 5 | renegcl 8353 | . . 3 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
| 6 | readdcl 8071 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) | |
| 7 | 5, 6 | sylan2 286 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) |
| 8 | 4, 7 | eqeltrrd 2284 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 (class class class)co 5957 ℂcc 7943 ℝcr 7944 + caddc 7948 − cmin 8263 -cneg 8264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-setind 4593 ax-resscn 8037 ax-1cn 8038 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-sub 8265 df-neg 8266 |
| This theorem is referenced by: peano2rem 8359 resubcld 8473 posdif 8548 lt2sub 8553 le2sub 8554 cju 9054 elz2 9464 difrp 9834 iooshf 10094 iccshftl 10138 lincmb01cmp 10145 uzsubsubfz 10189 difelfzle 10276 fzonmapblen 10333 eluzgtdifelfzo 10348 subfzo0 10393 modfzo0difsn 10562 expubnd 10763 absdiflt 11478 absdifle 11479 elicc4abs 11480 abssubge0 11488 abs2difabs 11494 maxabsle 11590 resin4p 12104 recos4p 12105 cos01bnd 12144 cos01gt0 12149 pythagtriplem12 12673 pythagtriplem14 12675 pythagtriplem16 12677 fldivp1 12746 bl2ioo 15097 ioo2bl 15098 ioo2blex 15099 blssioo 15100 dich0 15199 sincosq1sgn 15373 sincosq2sgn 15374 sincosq3sgn 15375 sincosq4sgn 15376 sinq12gt0 15377 cosq14gt0 15379 tangtx 15385 relogdiv 15417 logdivlti 15428 gausslemma2dlem1a 15610 redc0 16137 reap0 16138 |
| Copyright terms: Public domain | W3C validator |