| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resubcl | GIF version | ||
| Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
| Ref | Expression |
|---|---|
| resubcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 8029 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 2 | recn 8029 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 3 | negsub 8291 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| 5 | renegcl 8304 | . . 3 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
| 6 | readdcl 8022 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) | |
| 7 | 5, 6 | sylan2 286 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) |
| 8 | 4, 7 | eqeltrrd 2274 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 ℝcr 7895 + caddc 7899 − cmin 8214 -cneg 8215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-neg 8217 |
| This theorem is referenced by: peano2rem 8310 resubcld 8424 posdif 8499 lt2sub 8504 le2sub 8505 cju 9005 elz2 9414 difrp 9784 iooshf 10044 iccshftl 10088 lincmb01cmp 10095 uzsubsubfz 10139 difelfzle 10226 fzonmapblen 10280 eluzgtdifelfzo 10290 subfzo0 10335 modfzo0difsn 10504 expubnd 10705 absdiflt 11274 absdifle 11275 elicc4abs 11276 abssubge0 11284 abs2difabs 11290 maxabsle 11386 resin4p 11900 recos4p 11901 cos01bnd 11940 cos01gt0 11945 pythagtriplem12 12469 pythagtriplem14 12471 pythagtriplem16 12473 fldivp1 12542 bl2ioo 14870 ioo2bl 14871 ioo2blex 14872 blssioo 14873 dich0 14972 sincosq1sgn 15146 sincosq2sgn 15147 sincosq3sgn 15148 sincosq4sgn 15149 sinq12gt0 15150 cosq14gt0 15152 tangtx 15158 relogdiv 15190 logdivlti 15201 gausslemma2dlem1a 15383 redc0 15788 reap0 15789 |
| Copyright terms: Public domain | W3C validator |