![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resubcl | GIF version |
Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
Ref | Expression |
---|---|
resubcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 8007 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | recn 8007 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
3 | negsub 8269 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
5 | renegcl 8282 | . . 3 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
6 | readdcl 8000 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) | |
7 | 5, 6 | sylan2 286 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) |
8 | 4, 7 | eqeltrrd 2271 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 ℝcr 7873 + caddc 7877 − cmin 8192 -cneg 8193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-neg 8195 |
This theorem is referenced by: peano2rem 8288 resubcld 8402 posdif 8476 lt2sub 8481 le2sub 8482 cju 8982 elz2 9391 difrp 9761 iooshf 10021 iccshftl 10065 lincmb01cmp 10072 uzsubsubfz 10116 difelfzle 10203 fzonmapblen 10257 eluzgtdifelfzo 10267 subfzo0 10312 modfzo0difsn 10469 expubnd 10670 absdiflt 11239 absdifle 11240 elicc4abs 11241 abssubge0 11249 abs2difabs 11255 maxabsle 11351 resin4p 11864 recos4p 11865 cos01bnd 11904 cos01gt0 11909 pythagtriplem12 12416 pythagtriplem14 12418 pythagtriplem16 12420 fldivp1 12489 bl2ioo 14729 ioo2bl 14730 ioo2blex 14731 blssioo 14732 dich0 14831 sincosq1sgn 15002 sincosq2sgn 15003 sincosq3sgn 15004 sincosq4sgn 15005 sinq12gt0 15006 cosq14gt0 15008 tangtx 15014 relogdiv 15046 logdivlti 15057 gausslemma2dlem1a 15215 redc0 15617 reap0 15618 |
Copyright terms: Public domain | W3C validator |