![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resubcl | GIF version |
Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
Ref | Expression |
---|---|
resubcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7962 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | recn 7962 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
3 | negsub 8223 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
5 | renegcl 8236 | . . 3 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
6 | readdcl 7955 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) | |
7 | 5, 6 | sylan2 286 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -𝐵) ∈ ℝ) |
8 | 4, 7 | eqeltrrd 2267 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 (class class class)co 5891 ℂcc 7827 ℝcr 7828 + caddc 7832 − cmin 8146 -cneg 8147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-setind 4551 ax-resscn 7921 ax-1cn 7922 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-addcom 7929 ax-addass 7931 ax-distr 7933 ax-i2m1 7934 ax-0id 7937 ax-rnegex 7938 ax-cnre 7940 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5233 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-sub 8148 df-neg 8149 |
This theorem is referenced by: peano2rem 8242 resubcld 8356 posdif 8430 lt2sub 8435 le2sub 8436 cju 8936 elz2 9342 difrp 9710 iooshf 9970 iccshftl 10014 lincmb01cmp 10021 uzsubsubfz 10065 difelfzle 10152 fzonmapblen 10205 eluzgtdifelfzo 10215 subfzo0 10260 modfzo0difsn 10413 expubnd 10595 absdiflt 11119 absdifle 11120 elicc4abs 11121 abssubge0 11129 abs2difabs 11135 maxabsle 11231 resin4p 11744 recos4p 11745 cos01bnd 11784 cos01gt0 11788 pythagtriplem12 12293 pythagtriplem14 12295 pythagtriplem16 12297 fldivp1 12364 bl2ioo 14426 ioo2bl 14427 ioo2blex 14428 blssioo 14429 sincosq1sgn 14631 sincosq2sgn 14632 sincosq3sgn 14633 sincosq4sgn 14634 sinq12gt0 14635 cosq14gt0 14637 tangtx 14643 relogdiv 14675 logdivlti 14686 redc0 15190 reap0 15191 |
Copyright terms: Public domain | W3C validator |