| Step | Hyp | Ref
| Expression |
| 1 | | sermono.2 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 2 | | eqid 2196 |
. . . 4
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
| 3 | | sermono.1 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 4 | | eluzel2 9623 |
. . . . . 6
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 5 | 3, 4 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 6 | 5 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑀 ∈ ℤ) |
| 7 | | ser3mono.3 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℝ) |
| 8 | 7 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℝ) |
| 9 | 2, 6, 8 | serfre 10593 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶ℝ) |
| 10 | | elfzuz 10113 |
. . . 4
⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ≥‘𝐾)) |
| 11 | | uztrn 9635 |
. . . 4
⊢ ((𝑘 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 12 | 10, 3, 11 | syl2anr 290 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 13 | 9, 12 | ffvelcdmd 5701 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ) |
| 14 | | fveq2 5561 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑘 + 1))) |
| 15 | 14 | breq2d 4046 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → (0 ≤ (𝐹‘𝑥) ↔ 0 ≤ (𝐹‘(𝑘 + 1)))) |
| 16 | | sermono.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹‘𝑥)) |
| 17 | 16 | ralrimiva 2570 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹‘𝑥)) |
| 18 | 17 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹‘𝑥)) |
| 19 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...(𝑁 − 1))) |
| 20 | 3 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 21 | | eluzelz 9627 |
. . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝐾 ∈ ℤ) |
| 22 | 20, 21 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ ℤ) |
| 23 | 1 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 24 | | eluzelz 9627 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → 𝑁 ∈ ℤ) |
| 25 | 23, 24 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ ℤ) |
| 26 | | peano2zm 9381 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
| 27 | 25, 26 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑁 − 1) ∈ ℤ) |
| 28 | | elfzelz 10117 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ ℤ) |
| 29 | 28 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ ℤ) |
| 30 | | 1zzd 9370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 1 ∈
ℤ) |
| 31 | | fzaddel 10151 |
. . . . . . . 8
⊢ (((𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ)
∧ (𝑘 ∈ ℤ
∧ 1 ∈ ℤ)) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))) |
| 32 | 22, 27, 29, 30, 31 | syl22anc 1250 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))) |
| 33 | 19, 32 | mpbid 147 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))) |
| 34 | | zcn 9348 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 35 | | ax-1cn 7989 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
| 36 | | npcan 8252 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
| 37 | 34, 35, 36 | sylancl 413 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
| 38 | 25, 37 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
| 39 | 38 | oveq2d 5941 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝐾 + 1)...((𝑁 − 1) + 1)) = ((𝐾 + 1)...𝑁)) |
| 40 | 33, 39 | eleqtrd 2275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...𝑁)) |
| 41 | 15, 18, 40 | rspcdva 2873 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 0 ≤ (𝐹‘(𝑘 + 1))) |
| 42 | | fzelp1 10166 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1))) |
| 43 | 42 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1))) |
| 44 | 38 | oveq2d 5941 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...((𝑁 − 1) + 1)) = (𝐾...𝑁)) |
| 45 | 43, 44 | eleqtrd 2275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...𝑁)) |
| 46 | 45, 13 | syldan 282 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ) |
| 47 | 14 | eleq1d 2265 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ)) |
| 48 | 7 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ ℝ) |
| 49 | 48 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈
(ℤ≥‘𝑀)(𝐹‘𝑥) ∈ ℝ) |
| 50 | | fzss1 10155 |
. . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| 51 | 20, 50 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| 52 | | fzp1elp1 10167 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1))) |
| 53 | 52 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1))) |
| 54 | 53, 44 | eleqtrd 2275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...𝑁)) |
| 55 | 51, 54 | sseldd 3185 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
| 56 | | elfzuz 10113 |
. . . . . . 7
⊢ ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) |
| 57 | 55, 56 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) |
| 58 | 47, 49, 57 | rspcdva 2873 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ) |
| 59 | 46, 58 | addge01d 8577 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (0 ≤ (𝐹‘(𝑘 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))) |
| 60 | 41, 59 | mpbid 147 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
| 61 | 45, 12 | syldan 282 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 62 | 7 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℝ) |
| 63 | | readdcl 8022 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
| 64 | 63 | adantl 277 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) |
| 65 | 61, 62, 64 | seq3p1 10574 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
| 66 | 60, 65 | breqtrrd 4062 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ (seq𝑀( + , 𝐹)‘(𝑘 + 1))) |
| 67 | 1, 13, 66 | monoord 10594 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁)) |