ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3mono GIF version

Theorem ser3mono 10092
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
Hypotheses
Ref Expression
sermono.1 (𝜑𝐾 ∈ (ℤ𝑀))
sermono.2 (𝜑𝑁 ∈ (ℤ𝐾))
ser3mono.3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℝ)
sermono.4 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))
Assertion
Ref Expression
ser3mono (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐾   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥

Proof of Theorem ser3mono
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sermono.2 . 2 (𝜑𝑁 ∈ (ℤ𝐾))
2 eqid 2100 . . . 4 (ℤ𝑀) = (ℤ𝑀)
3 sermono.1 . . . . . 6 (𝜑𝐾 ∈ (ℤ𝑀))
4 eluzel2 9181 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
65adantr 272 . . . 4 ((𝜑𝑘 ∈ (𝐾...𝑁)) → 𝑀 ∈ ℤ)
7 ser3mono.3 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℝ)
87adantlr 464 . . . 4 (((𝜑𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℝ)
92, 6, 8serfre 10089 . . 3 ((𝜑𝑘 ∈ (𝐾...𝑁)) → seq𝑀( + , 𝐹):(ℤ𝑀)⟶ℝ)
10 elfzuz 9643 . . . 4 (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ𝐾))
11 uztrn 9192 . . . 4 ((𝑘 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
1210, 3, 11syl2anr 286 . . 3 ((𝜑𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ𝑀))
139, 12ffvelrnd 5488 . 2 ((𝜑𝑘 ∈ (𝐾...𝑁)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ)
14 fveq2 5353 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
1514breq2d 3887 . . . . 5 (𝑥 = (𝑘 + 1) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ (𝐹‘(𝑘 + 1))))
16 sermono.4 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))
1716ralrimiva 2464 . . . . . 6 (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹𝑥))
1817adantr 272 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹𝑥))
19 simpr 109 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...(𝑁 − 1)))
203adantr 272 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ (ℤ𝑀))
21 eluzelz 9185 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
2220, 21syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ ℤ)
231adantr 272 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ (ℤ𝐾))
24 eluzelz 9185 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ ℤ)
2523, 24syl 14 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ ℤ)
26 peano2zm 8944 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2725, 26syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑁 − 1) ∈ ℤ)
28 elfzelz 9647 . . . . . . . . 9 (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ ℤ)
2928adantl 273 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ ℤ)
30 1zzd 8933 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 1 ∈ ℤ)
31 fzaddel 9680 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))))
3222, 27, 29, 30, 31syl22anc 1185 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))))
3319, 32mpbid 146 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))
34 zcn 8911 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
35 ax-1cn 7588 . . . . . . . . 9 1 ∈ ℂ
36 npcan 7842 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
3734, 35, 36sylancl 407 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
3825, 37syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
3938oveq2d 5722 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝐾 + 1)...((𝑁 − 1) + 1)) = ((𝐾 + 1)...𝑁))
4033, 39eleqtrd 2178 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...𝑁))
4115, 18, 40rspcdva 2749 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 0 ≤ (𝐹‘(𝑘 + 1)))
42 fzelp1 9695 . . . . . . . 8 (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1)))
4342adantl 273 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1)))
4438oveq2d 5722 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...((𝑁 − 1) + 1)) = (𝐾...𝑁))
4543, 44eleqtrd 2178 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...𝑁))
4645, 13syldan 278 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ)
4714eleq1d 2168 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ))
487ralrimiva 2464 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℝ)
4948adantr 272 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ ℝ)
50 fzss1 9684 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
5120, 50syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
52 fzp1elp1 9696 . . . . . . . . . 10 (𝑘 ∈ (𝐾...(𝑁 − 1)) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1)))
5352adantl 273 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1)))
5453, 44eleqtrd 2178 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...𝑁))
5551, 54sseldd 3048 . . . . . . 7 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁))
56 elfzuz 9643 . . . . . . 7 ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ∈ (ℤ𝑀))
5755, 56syl 14 . . . . . 6 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (ℤ𝑀))
5847, 49, 57rspcdva 2749 . . . . 5 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
5946, 58addge01d 8161 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (0 ≤ (𝐹‘(𝑘 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))))
6041, 59mpbid 146 . . 3 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
6145, 12syldan 278 . . . 4 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (ℤ𝑀))
627adantlr 464 . . . 4 (((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℝ)
63 readdcl 7618 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
6463adantl 273 . . . 4 (((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
6561, 62, 64seq3p1 10076 . . 3 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
6660, 65breqtrrd 3901 . 2 ((𝜑𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ (seq𝑀( + , 𝐹)‘(𝑘 + 1)))
671, 13, 66monoord 10090 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  wral 2375  wss 3021   class class class wbr 3875  cfv 5059  (class class class)co 5706  cc 7498  cr 7499  0cc0 7500  1c1 7501   + caddc 7503  cle 7673  cmin 7804  cz 8906  cuz 9176  ...cfz 9631  seqcseq 10059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-fz 9632  df-seqfrec 10060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator