| Step | Hyp | Ref
 | Expression | 
| 1 |   | sermono.2 | 
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) | 
| 2 |   | eqid 2196 | 
. . . 4
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) | 
| 3 |   | sermono.1 | 
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) | 
| 4 |   | eluzel2 9606 | 
. . . . . 6
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | 
| 5 | 3, 4 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 6 | 5 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑀 ∈ ℤ) | 
| 7 |   | ser3mono.3 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℝ) | 
| 8 | 7 | adantlr 477 | 
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℝ) | 
| 9 | 2, 6, 8 | serfre 10576 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶ℝ) | 
| 10 |   | elfzuz 10096 | 
. . . 4
⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ≥‘𝐾)) | 
| 11 |   | uztrn 9618 | 
. . . 4
⊢ ((𝑘 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 12 | 10, 3, 11 | syl2anr 290 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 13 | 9, 12 | ffvelcdmd 5698 | 
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ) | 
| 14 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑘 + 1))) | 
| 15 | 14 | breq2d 4045 | 
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → (0 ≤ (𝐹‘𝑥) ↔ 0 ≤ (𝐹‘(𝑘 + 1)))) | 
| 16 |   | sermono.4 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹‘𝑥)) | 
| 17 | 16 | ralrimiva 2570 | 
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹‘𝑥)) | 
| 18 | 17 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹‘𝑥)) | 
| 19 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...(𝑁 − 1))) | 
| 20 | 3 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ (ℤ≥‘𝑀)) | 
| 21 |   | eluzelz 9610 | 
. . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | 
| 22 | 20, 21 | syl 14 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ ℤ) | 
| 23 | 1 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝐾)) | 
| 24 |   | eluzelz 9610 | 
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | 
| 25 | 23, 24 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ ℤ) | 
| 26 |   | peano2zm 9364 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) | 
| 27 | 25, 26 | syl 14 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑁 − 1) ∈ ℤ) | 
| 28 |   | elfzelz 10100 | 
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ ℤ) | 
| 29 | 28 | adantl 277 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ ℤ) | 
| 30 |   | 1zzd 9353 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 1 ∈
ℤ) | 
| 31 |   | fzaddel 10134 | 
. . . . . . . 8
⊢ (((𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ)
∧ (𝑘 ∈ ℤ
∧ 1 ∈ ℤ)) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))) | 
| 32 | 22, 27, 29, 30, 31 | syl22anc 1250 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))) | 
| 33 | 19, 32 | mpbid 147 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))) | 
| 34 |   | zcn 9331 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) | 
| 35 |   | ax-1cn 7972 | 
. . . . . . . . 9
⊢ 1 ∈
ℂ | 
| 36 |   | npcan 8235 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) | 
| 37 | 34, 35, 36 | sylancl 413 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) | 
| 38 | 25, 37 | syl 14 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) | 
| 39 | 38 | oveq2d 5938 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝐾 + 1)...((𝑁 − 1) + 1)) = ((𝐾 + 1)...𝑁)) | 
| 40 | 33, 39 | eleqtrd 2275 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...𝑁)) | 
| 41 | 15, 18, 40 | rspcdva 2873 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 0 ≤ (𝐹‘(𝑘 + 1))) | 
| 42 |   | fzelp1 10149 | 
. . . . . . . 8
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1))) | 
| 43 | 42 | adantl 277 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1))) | 
| 44 | 38 | oveq2d 5938 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...((𝑁 − 1) + 1)) = (𝐾...𝑁)) | 
| 45 | 43, 44 | eleqtrd 2275 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...𝑁)) | 
| 46 | 45, 13 | syldan 282 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ) | 
| 47 | 14 | eleq1d 2265 | 
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ)) | 
| 48 | 7 | ralrimiva 2570 | 
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ ℝ) | 
| 49 | 48 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈
(ℤ≥‘𝑀)(𝐹‘𝑥) ∈ ℝ) | 
| 50 |   | fzss1 10138 | 
. . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) | 
| 51 | 20, 50 | syl 14 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) | 
| 52 |   | fzp1elp1 10150 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1))) | 
| 53 | 52 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1))) | 
| 54 | 53, 44 | eleqtrd 2275 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...𝑁)) | 
| 55 | 51, 54 | sseldd 3184 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁)) | 
| 56 |   | elfzuz 10096 | 
. . . . . . 7
⊢ ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) | 
| 57 | 55, 56 | syl 14 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) | 
| 58 | 47, 49, 57 | rspcdva 2873 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ) | 
| 59 | 46, 58 | addge01d 8560 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (0 ≤ (𝐹‘(𝑘 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))) | 
| 60 | 41, 59 | mpbid 147 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) | 
| 61 | 45, 12 | syldan 282 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 62 | 7 | adantlr 477 | 
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℝ) | 
| 63 |   | readdcl 8005 | 
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | 
| 64 | 63 | adantl 277 | 
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) | 
| 65 | 61, 62, 64 | seq3p1 10557 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) | 
| 66 | 60, 65 | breqtrrd 4061 | 
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ (seq𝑀( + , 𝐹)‘(𝑘 + 1))) | 
| 67 | 1, 13, 66 | monoord 10577 | 
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁)) |