Step | Hyp | Ref
| Expression |
1 | | sermono.2 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) |
2 | | eqid 2170 |
. . . 4
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
3 | | sermono.1 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
4 | | eluzel2 9492 |
. . . . . 6
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
5 | 3, 4 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
6 | 5 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑀 ∈ ℤ) |
7 | | ser3mono.3 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℝ) |
8 | 7 | adantlr 474 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℝ) |
9 | 2, 6, 8 | serfre 10431 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶ℝ) |
10 | | elfzuz 9977 |
. . . 4
⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ≥‘𝐾)) |
11 | | uztrn 9503 |
. . . 4
⊢ ((𝑘 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
12 | 10, 3, 11 | syl2anr 288 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
13 | 9, 12 | ffvelrnd 5632 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...𝑁)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ) |
14 | | fveq2 5496 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑘 + 1))) |
15 | 14 | breq2d 4001 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → (0 ≤ (𝐹‘𝑥) ↔ 0 ≤ (𝐹‘(𝑘 + 1)))) |
16 | | sermono.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹‘𝑥)) |
17 | 16 | ralrimiva 2543 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹‘𝑥)) |
18 | 17 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)0 ≤ (𝐹‘𝑥)) |
19 | | simpr 109 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...(𝑁 − 1))) |
20 | 3 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ (ℤ≥‘𝑀)) |
21 | | eluzelz 9496 |
. . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝐾 ∈ ℤ) |
22 | 20, 21 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝐾 ∈ ℤ) |
23 | 1 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝐾)) |
24 | | eluzelz 9496 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → 𝑁 ∈ ℤ) |
25 | 23, 24 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑁 ∈ ℤ) |
26 | | peano2zm 9250 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
27 | 25, 26 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑁 − 1) ∈ ℤ) |
28 | | elfzelz 9981 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ ℤ) |
29 | 28 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ ℤ) |
30 | | 1zzd 9239 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 1 ∈
ℤ) |
31 | | fzaddel 10015 |
. . . . . . . 8
⊢ (((𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ)
∧ (𝑘 ∈ ℤ
∧ 1 ∈ ℤ)) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))) |
32 | 22, 27, 29, 30, 31 | syl22anc 1234 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 ∈ (𝐾...(𝑁 − 1)) ↔ (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1)))) |
33 | 19, 32 | mpbid 146 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...((𝑁 − 1) + 1))) |
34 | | zcn 9217 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
35 | | ax-1cn 7867 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
36 | | npcan 8128 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
37 | 34, 35, 36 | sylancl 411 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
38 | 25, 37 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
39 | 38 | oveq2d 5869 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ((𝐾 + 1)...((𝑁 − 1) + 1)) = ((𝐾 + 1)...𝑁)) |
40 | 33, 39 | eleqtrd 2249 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ ((𝐾 + 1)...𝑁)) |
41 | 15, 18, 40 | rspcdva 2839 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 0 ≤ (𝐹‘(𝑘 + 1))) |
42 | | fzelp1 10030 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1))) |
43 | 42 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...((𝑁 − 1) + 1))) |
44 | 38 | oveq2d 5869 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...((𝑁 − 1) + 1)) = (𝐾...𝑁)) |
45 | 43, 44 | eleqtrd 2249 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (𝐾...𝑁)) |
46 | 45, 13 | syldan 280 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℝ) |
47 | 14 | eleq1d 2239 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ)) |
48 | 7 | ralrimiva 2543 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ ℝ) |
49 | 48 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → ∀𝑥 ∈
(ℤ≥‘𝑀)(𝐹‘𝑥) ∈ ℝ) |
50 | | fzss1 10019 |
. . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
51 | 20, 50 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
52 | | fzp1elp1 10031 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝐾...(𝑁 − 1)) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1))) |
53 | 52 | adantl 275 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...((𝑁 − 1) + 1))) |
54 | 53, 44 | eleqtrd 2249 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝐾...𝑁)) |
55 | 51, 54 | sseldd 3148 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁)) |
56 | | elfzuz 9977 |
. . . . . . 7
⊢ ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) |
57 | 55, 56 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) |
58 | 47, 49, 57 | rspcdva 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ) |
59 | 46, 58 | addge01d 8452 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (0 ≤ (𝐹‘(𝑘 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))) |
60 | 41, 59 | mpbid 146 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
61 | 45, 12 | syldan 280 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
62 | 7 | adantlr 474 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ ℝ) |
63 | | readdcl 7900 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
64 | 63 | adantl 275 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) |
65 | 61, 62, 64 | seq3p1 10418 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
66 | 60, 65 | breqtrrd 4017 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐾...(𝑁 − 1))) → (seq𝑀( + , 𝐹)‘𝑘) ≤ (seq𝑀( + , 𝐹)‘(𝑘 + 1))) |
67 | 1, 13, 66 | monoord 10432 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁)) |