![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bl2ioo | GIF version |
Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
Ref | Expression |
---|---|
remet.1 | ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
Ref | Expression |
---|---|
bl2ioo | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remet.1 | . . . . . . . . . 10 ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
2 | 1 | remetdval 12458 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝐴 − 𝑥))) |
3 | recn 7625 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
4 | recn 7625 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
5 | abssub 10713 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐴 − 𝑥)) = (abs‘(𝑥 − 𝐴))) | |
6 | 3, 4, 5 | syl2an 285 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (abs‘(𝐴 − 𝑥)) = (abs‘(𝑥 − 𝐴))) |
7 | 2, 6 | eqtrd 2132 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝑥 − 𝐴))) |
8 | 7 | breq1d 3885 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥 − 𝐴)) < 𝐵)) |
9 | 8 | adantlr 464 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥 − 𝐴)) < 𝐵)) |
10 | absdiflt 10704 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) | |
11 | 10 | 3expb 1150 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
12 | 11 | ancoms 266 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
13 | 9, 12 | bitrd 187 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
14 | 13 | pm5.32da 443 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵))))) |
15 | 3anass 934 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) | |
16 | 14, 15 | syl6bbr 197 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
17 | rexr 7683 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
18 | 1 | rexmet 12460 | . . . . 5 ⊢ 𝐷 ∈ (∞Met‘ℝ) |
19 | elbl 12319 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵))) | |
20 | 18, 19 | mp3an1 1270 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵))) |
21 | 17, 20 | sylan2 282 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵))) |
22 | resubcl 7897 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
23 | readdcl 7618 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
24 | rexr 7683 | . . . . 5 ⊢ ((𝐴 − 𝐵) ∈ ℝ → (𝐴 − 𝐵) ∈ ℝ*) | |
25 | rexr 7683 | . . . . 5 ⊢ ((𝐴 + 𝐵) ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ*) | |
26 | elioo2 9545 | . . . . 5 ⊢ (((𝐴 − 𝐵) ∈ ℝ* ∧ (𝐴 + 𝐵) ∈ ℝ*) → (𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) | |
27 | 24, 25, 26 | syl2an 285 | . . . 4 ⊢ (((𝐴 − 𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
28 | 22, 23, 27 | syl2anc 406 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
29 | 16, 21, 28 | 3bitr4d 219 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ 𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)))) |
30 | 29 | eqrdv 2098 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 930 = wceq 1299 ∈ wcel 1448 class class class wbr 3875 × cxp 4475 ↾ cres 4479 ∘ ccom 4481 ‘cfv 5059 (class class class)co 5706 ℂcc 7498 ℝcr 7499 + caddc 7503 ℝ*cxr 7671 < clt 7672 − cmin 7804 (,)cioo 9512 abscabs 10609 ∞Metcxmet 11931 ballcbl 11933 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 ax-arch 7614 ax-caucvg 7615 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-if 3422 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-id 4153 df-po 4156 df-iso 4157 df-iord 4226 df-on 4228 df-ilim 4229 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-frec 6218 df-map 6474 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-inn 8579 df-2 8637 df-3 8638 df-4 8639 df-n0 8830 df-z 8907 df-uz 9177 df-rp 9292 df-xadd 9401 df-ioo 9516 df-seqfrec 10060 df-exp 10134 df-cj 10455 df-re 10456 df-im 10457 df-rsqrt 10610 df-abs 10611 df-psmet 11938 df-xmet 11939 df-met 11940 df-bl 11941 |
This theorem is referenced by: ioo2bl 12462 blssioo 12464 tgioo 12465 |
Copyright terms: Public domain | W3C validator |