Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  bl2ioo GIF version

Theorem bl2ioo 12748
 Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypothesis
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
bl2ioo ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))

Proof of Theorem bl2ioo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . . . . . . . 10 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
21remetdval 12745 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝐴𝑥)))
3 recn 7776 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 7776 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
5 abssub 10904 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐴𝑥)) = (abs‘(𝑥𝐴)))
63, 4, 5syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (abs‘(𝐴𝑥)) = (abs‘(𝑥𝐴)))
72, 6eqtrd 2173 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝑥𝐴)))
87breq1d 3946 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥𝐴)) < 𝐵))
98adantlr 469 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥𝐴)) < 𝐵))
10 absdiflt 10895 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
11103expb 1183 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
1211ancoms 266 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
139, 12bitrd 187 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
1413pm5.32da 448 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵)))))
15 3anass 967 . . . 4 ((𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ ((𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
1614, 15syl6bbr 197 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
17 rexr 7834 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
181rexmet 12747 . . . . 5 𝐷 ∈ (∞Met‘ℝ)
19 elbl 12597 . . . . 5 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵)))
2018, 19mp3an1 1303 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵)))
2117, 20sylan2 284 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵)))
22 resubcl 8049 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
23 readdcl 7769 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
24 rexr 7834 . . . . 5 ((𝐴𝐵) ∈ ℝ → (𝐴𝐵) ∈ ℝ*)
25 rexr 7834 . . . . 5 ((𝐴 + 𝐵) ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ*)
26 elioo2 9733 . . . . 5 (((𝐴𝐵) ∈ ℝ* ∧ (𝐴 + 𝐵) ∈ ℝ*) → (𝑥 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
2724, 25, 26syl2an 287 . . . 4 (((𝐴𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝑥 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
2822, 23, 27syl2anc 409 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐵) < 𝑥𝑥 < (𝐴 + 𝐵))))
2916, 21, 283bitr4d 219 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ 𝑥 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵))))
3029eqrdv 2138 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481   class class class wbr 3936   × cxp 4544   ↾ cres 4548   ∘ ccom 4550  ‘cfv 5130  (class class class)co 5781  ℂcc 7641  ℝcr 7642   + caddc 7646  ℝ*cxr 7822   < clt 7823   − cmin 7956  (,)cioo 9700  abscabs 10800  ∞Metcxmet 12186  ballcbl 12188 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-map 6551  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-rp 9470  df-xadd 9589  df-ioo 9704  df-seqfrec 10249  df-exp 10323  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802  df-psmet 12193  df-xmet 12194  df-met 12195  df-bl 12196 This theorem is referenced by:  ioo2bl  12749  blssioo  12751  tgioo  12752
 Copyright terms: Public domain W3C validator