![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bl2ioo | GIF version |
Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
Ref | Expression |
---|---|
remet.1 | ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
Ref | Expression |
---|---|
bl2ioo | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remet.1 | . . . . . . . . . 10 ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
2 | 1 | remetdval 14726 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝐴 − 𝑥))) |
3 | recn 8007 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
4 | recn 8007 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
5 | abssub 11248 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐴 − 𝑥)) = (abs‘(𝑥 − 𝐴))) | |
6 | 3, 4, 5 | syl2an 289 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (abs‘(𝐴 − 𝑥)) = (abs‘(𝑥 − 𝐴))) |
7 | 2, 6 | eqtrd 2226 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴𝐷𝑥) = (abs‘(𝑥 − 𝐴))) |
8 | 7 | breq1d 4040 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥 − 𝐴)) < 𝐵)) |
9 | 8 | adantlr 477 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ (abs‘(𝑥 − 𝐴)) < 𝐵)) |
10 | absdiflt 11239 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) | |
11 | 10 | 3expb 1206 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
12 | 11 | ancoms 268 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
13 | 9, 12 | bitrd 188 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐷𝑥) < 𝐵 ↔ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
14 | 13 | pm5.32da 452 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵))))) |
15 | 3anass 984 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ ((𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) | |
16 | 14, 15 | bitr4di 198 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
17 | rexr 8067 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
18 | 1 | rexmet 14728 | . . . . 5 ⊢ 𝐷 ∈ (∞Met‘ℝ) |
19 | elbl 14570 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵))) | |
20 | 18, 19 | mp3an1 1335 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵))) |
21 | 17, 20 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ (𝑥 ∈ ℝ ∧ (𝐴𝐷𝑥) < 𝐵))) |
22 | resubcl 8285 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
23 | readdcl 8000 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
24 | rexr 8067 | . . . . 5 ⊢ ((𝐴 − 𝐵) ∈ ℝ → (𝐴 − 𝐵) ∈ ℝ*) | |
25 | rexr 8067 | . . . . 5 ⊢ ((𝐴 + 𝐵) ∈ ℝ → (𝐴 + 𝐵) ∈ ℝ*) | |
26 | elioo2 9990 | . . . . 5 ⊢ (((𝐴 − 𝐵) ∈ ℝ* ∧ (𝐴 + 𝐵) ∈ ℝ*) → (𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) | |
27 | 24, 25, 26 | syl2an 289 | . . . 4 ⊢ (((𝐴 − 𝐵) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
28 | 22, 23, 27 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 − 𝐵) < 𝑥 ∧ 𝑥 < (𝐴 + 𝐵)))) |
29 | 16, 21, 28 | 3bitr4d 220 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(ball‘𝐷)𝐵) ↔ 𝑥 ∈ ((𝐴 − 𝐵)(,)(𝐴 + 𝐵)))) |
30 | 29 | eqrdv 2191 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 × cxp 4658 ↾ cres 4662 ∘ ccom 4664 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 + caddc 7877 ℝ*cxr 8055 < clt 8056 − cmin 8192 (,)cioo 9957 abscabs 11144 ∞Metcxmet 14035 ballcbl 14037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-map 6706 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 df-xadd 9842 df-ioo 9961 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-psmet 14042 df-xmet 14043 df-met 14044 df-bl 14045 |
This theorem is referenced by: ioo2bl 14730 blssioo 14732 tgioo 14733 |
Copyright terms: Public domain | W3C validator |