ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3ge0 GIF version

Theorem ser3ge0 10321
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
ser3ge0.1 (𝜑𝑁 ∈ (ℤ𝑀))
ser3ge0.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
ser3ge0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
ser3ge0 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem ser3ge0
Dummy variables 𝑗 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 9843 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5429 . . . . 5 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑀))
54breq2d 3949 . . . 4 (𝑤 = 𝑀 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑀)))
65imbi2d 229 . . 3 (𝑤 = 𝑀 → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑀))))
7 fveq2 5429 . . . . 5 (𝑤 = 𝑗 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑗))
87breq2d 3949 . . . 4 (𝑤 = 𝑗 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)))
98imbi2d 229 . . 3 (𝑤 = 𝑗 → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑗))))
10 fveq2 5429 . . . . 5 (𝑤 = (𝑗 + 1) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘(𝑗 + 1)))
1110breq2d 3949 . . . 4 (𝑤 = (𝑗 + 1) → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))))
1211imbi2d 229 . . 3 (𝑤 = (𝑗 + 1) → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))))
13 fveq2 5429 . . . . 5 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑁))
1413breq2d 3949 . . . 4 (𝑤 = 𝑁 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)))
1514imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))))
16 fveq2 5429 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
1716breq2d 3949 . . . . . 6 (𝑘 = 𝑀 → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹𝑀)))
18 ser3ge0.3 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))
1918ralrimiva 2508 . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)0 ≤ (𝐹𝑘))
20 eluzfz1 9842 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
211, 20syl 14 . . . . . 6 (𝜑𝑀 ∈ (𝑀...𝑁))
2217, 19, 21rspcdva 2798 . . . . 5 (𝜑 → 0 ≤ (𝐹𝑀))
23 eluzel2 9355 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
241, 23syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
25 ser3ge0.2 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
26 readdcl 7770 . . . . . . 7 ((𝑘 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑘 + 𝑣) ∈ ℝ)
2726adantl 275 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑘 + 𝑣) ∈ ℝ)
2824, 25, 27seq3-1 10264 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
2922, 28breqtrrd 3964 . . . 4 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑀))
3029a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑀)))
31 eqid 2140 . . . . . . . . . . 11 (ℤ𝑀) = (ℤ𝑀)
3231, 24, 25, 27seqf 10265 . . . . . . . . . 10 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶ℝ)
3332ad2antrr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → seq𝑀( + , 𝐹):(ℤ𝑀)⟶ℝ)
34 elfzouz 9959 . . . . . . . . . 10 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (ℤ𝑀))
3534ad2antlr 481 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 𝑗 ∈ (ℤ𝑀))
3633, 35ffvelrnd 5564 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
37 fveq2 5429 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
3837eleq1d 2209 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑗 + 1)) ∈ ℝ))
3925ralrimiva 2508 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℝ)
4039adantr 274 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℝ)
41 peano2uz 9405 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ𝑀))
4234, 41syl 14 . . . . . . . . . . 11 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (ℤ𝑀))
4342adantl 275 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (ℤ𝑀))
4438, 40, 43rspcdva 2798 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
4544adantr 274 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
46 simpr 109 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ (seq𝑀( + , 𝐹)‘𝑗))
4737breq2d 3949 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘(𝑗 + 1))))
4819ad2antrr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → ∀𝑘 ∈ (𝑀...𝑁)0 ≤ (𝐹𝑘))
49 fzofzp1 10035 . . . . . . . . . 10 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
5049ad2antlr 481 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (𝑗 + 1) ∈ (𝑀...𝑁))
5147, 48, 50rspcdva 2798 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ (𝐹‘(𝑗 + 1)))
5236, 45, 46, 51addge0d 8308 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
5325adantlr 469 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
5453adantlr 469 . . . . . . . 8 ((((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
5526adantl 275 . . . . . . . 8 ((((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) ∧ (𝑘 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑘 + 𝑣) ∈ ℝ)
5635, 54, 55seq3p1 10266 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
5752, 56breqtrrd 3964 . . . . . 6 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))
5857ex 114 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (0 ≤ (seq𝑀( + , 𝐹)‘𝑗) → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))))
5958expcom 115 . . . 4 (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑗) → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))))
6059a2d 26 . . 3 (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))))
616, 9, 12, 15, 30, 60fzind2 10047 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)))
623, 61mpcom 36 1 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  wral 2417   class class class wbr 3937  wf 5127  cfv 5131  (class class class)co 5782  cr 7643  0cc0 7644  1c1 7645   + caddc 7647  cle 7825  cz 9078  cuz 9350  ...cfz 9821  ..^cfzo 9950  seqcseq 10249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951  df-seqfrec 10250
This theorem is referenced by:  ser3le  10322
  Copyright terms: Public domain W3C validator