ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3ge0 GIF version

Theorem ser3ge0 10473
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
ser3ge0.1 (𝜑𝑁 ∈ (ℤ𝑀))
ser3ge0.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
ser3ge0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
ser3ge0 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem ser3ge0
Dummy variables 𝑗 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 9988 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5496 . . . . 5 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑀))
54breq2d 4001 . . . 4 (𝑤 = 𝑀 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑀)))
65imbi2d 229 . . 3 (𝑤 = 𝑀 → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑀))))
7 fveq2 5496 . . . . 5 (𝑤 = 𝑗 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑗))
87breq2d 4001 . . . 4 (𝑤 = 𝑗 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)))
98imbi2d 229 . . 3 (𝑤 = 𝑗 → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑗))))
10 fveq2 5496 . . . . 5 (𝑤 = (𝑗 + 1) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘(𝑗 + 1)))
1110breq2d 4001 . . . 4 (𝑤 = (𝑗 + 1) → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))))
1211imbi2d 229 . . 3 (𝑤 = (𝑗 + 1) → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))))
13 fveq2 5496 . . . . 5 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑁))
1413breq2d 4001 . . . 4 (𝑤 = 𝑁 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)))
1514imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))))
16 fveq2 5496 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
1716breq2d 4001 . . . . . 6 (𝑘 = 𝑀 → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹𝑀)))
18 ser3ge0.3 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))
1918ralrimiva 2543 . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)0 ≤ (𝐹𝑘))
20 eluzfz1 9987 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
211, 20syl 14 . . . . . 6 (𝜑𝑀 ∈ (𝑀...𝑁))
2217, 19, 21rspcdva 2839 . . . . 5 (𝜑 → 0 ≤ (𝐹𝑀))
23 eluzel2 9492 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
241, 23syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
25 ser3ge0.2 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
26 readdcl 7900 . . . . . . 7 ((𝑘 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑘 + 𝑣) ∈ ℝ)
2726adantl 275 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑘 + 𝑣) ∈ ℝ)
2824, 25, 27seq3-1 10416 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
2922, 28breqtrrd 4017 . . . 4 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑀))
3029a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑀)))
31 eqid 2170 . . . . . . . . . . 11 (ℤ𝑀) = (ℤ𝑀)
3231, 24, 25, 27seqf 10417 . . . . . . . . . 10 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶ℝ)
3332ad2antrr 485 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → seq𝑀( + , 𝐹):(ℤ𝑀)⟶ℝ)
34 elfzouz 10107 . . . . . . . . . 10 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (ℤ𝑀))
3534ad2antlr 486 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 𝑗 ∈ (ℤ𝑀))
3633, 35ffvelrnd 5632 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
37 fveq2 5496 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
3837eleq1d 2239 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑗 + 1)) ∈ ℝ))
3925ralrimiva 2543 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℝ)
4039adantr 274 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℝ)
41 peano2uz 9542 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ𝑀))
4234, 41syl 14 . . . . . . . . . . 11 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (ℤ𝑀))
4342adantl 275 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (ℤ𝑀))
4438, 40, 43rspcdva 2839 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
4544adantr 274 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
46 simpr 109 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ (seq𝑀( + , 𝐹)‘𝑗))
4737breq2d 4001 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘(𝑗 + 1))))
4819ad2antrr 485 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → ∀𝑘 ∈ (𝑀...𝑁)0 ≤ (𝐹𝑘))
49 fzofzp1 10183 . . . . . . . . . 10 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
5049ad2antlr 486 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (𝑗 + 1) ∈ (𝑀...𝑁))
5147, 48, 50rspcdva 2839 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ (𝐹‘(𝑗 + 1)))
5236, 45, 46, 51addge0d 8441 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
5325adantlr 474 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
5453adantlr 474 . . . . . . . 8 ((((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
5526adantl 275 . . . . . . . 8 ((((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) ∧ (𝑘 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑘 + 𝑣) ∈ ℝ)
5635, 54, 55seq3p1 10418 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
5752, 56breqtrrd 4017 . . . . . 6 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))
5857ex 114 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (0 ≤ (seq𝑀( + , 𝐹)‘𝑗) → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))))
5958expcom 115 . . . 4 (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑗) → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))))
6059a2d 26 . . 3 (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))))
616, 9, 12, 15, 30, 60fzind2 10195 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)))
623, 61mpcom 36 1 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448   class class class wbr 3989  wf 5194  cfv 5198  (class class class)co 5853  cr 7773  0cc0 7774  1c1 7775   + caddc 7777  cle 7955  cz 9212  cuz 9487  ...cfz 9965  ..^cfzo 10098  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099  df-seqfrec 10402
This theorem is referenced by:  ser3le  10474
  Copyright terms: Public domain W3C validator