ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3ge0 GIF version

Theorem ser3ge0 10452
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
ser3ge0.1 (𝜑𝑁 ∈ (ℤ𝑀))
ser3ge0.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
ser3ge0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
ser3ge0 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem ser3ge0
Dummy variables 𝑗 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 9967 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5486 . . . . 5 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑀))
54breq2d 3994 . . . 4 (𝑤 = 𝑀 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑀)))
65imbi2d 229 . . 3 (𝑤 = 𝑀 → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑀))))
7 fveq2 5486 . . . . 5 (𝑤 = 𝑗 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑗))
87breq2d 3994 . . . 4 (𝑤 = 𝑗 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)))
98imbi2d 229 . . 3 (𝑤 = 𝑗 → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑗))))
10 fveq2 5486 . . . . 5 (𝑤 = (𝑗 + 1) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘(𝑗 + 1)))
1110breq2d 3994 . . . 4 (𝑤 = (𝑗 + 1) → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))))
1211imbi2d 229 . . 3 (𝑤 = (𝑗 + 1) → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))))
13 fveq2 5486 . . . . 5 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑁))
1413breq2d 3994 . . . 4 (𝑤 = 𝑁 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)))
1514imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))))
16 fveq2 5486 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
1716breq2d 3994 . . . . . 6 (𝑘 = 𝑀 → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹𝑀)))
18 ser3ge0.3 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))
1918ralrimiva 2539 . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)0 ≤ (𝐹𝑘))
20 eluzfz1 9966 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
211, 20syl 14 . . . . . 6 (𝜑𝑀 ∈ (𝑀...𝑁))
2217, 19, 21rspcdva 2835 . . . . 5 (𝜑 → 0 ≤ (𝐹𝑀))
23 eluzel2 9471 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
241, 23syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
25 ser3ge0.2 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
26 readdcl 7879 . . . . . . 7 ((𝑘 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑘 + 𝑣) ∈ ℝ)
2726adantl 275 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑘 + 𝑣) ∈ ℝ)
2824, 25, 27seq3-1 10395 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
2922, 28breqtrrd 4010 . . . 4 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑀))
3029a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑀)))
31 eqid 2165 . . . . . . . . . . 11 (ℤ𝑀) = (ℤ𝑀)
3231, 24, 25, 27seqf 10396 . . . . . . . . . 10 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶ℝ)
3332ad2antrr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → seq𝑀( + , 𝐹):(ℤ𝑀)⟶ℝ)
34 elfzouz 10086 . . . . . . . . . 10 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (ℤ𝑀))
3534ad2antlr 481 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 𝑗 ∈ (ℤ𝑀))
3633, 35ffvelrnd 5621 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
37 fveq2 5486 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
3837eleq1d 2235 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑗 + 1)) ∈ ℝ))
3925ralrimiva 2539 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℝ)
4039adantr 274 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℝ)
41 peano2uz 9521 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ𝑀))
4234, 41syl 14 . . . . . . . . . . 11 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (ℤ𝑀))
4342adantl 275 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (ℤ𝑀))
4438, 40, 43rspcdva 2835 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
4544adantr 274 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
46 simpr 109 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ (seq𝑀( + , 𝐹)‘𝑗))
4737breq2d 3994 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘(𝑗 + 1))))
4819ad2antrr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → ∀𝑘 ∈ (𝑀...𝑁)0 ≤ (𝐹𝑘))
49 fzofzp1 10162 . . . . . . . . . 10 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
5049ad2antlr 481 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (𝑗 + 1) ∈ (𝑀...𝑁))
5147, 48, 50rspcdva 2835 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ (𝐹‘(𝑗 + 1)))
5236, 45, 46, 51addge0d 8420 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
5325adantlr 469 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
5453adantlr 469 . . . . . . . 8 ((((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
5526adantl 275 . . . . . . . 8 ((((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) ∧ (𝑘 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑘 + 𝑣) ∈ ℝ)
5635, 54, 55seq3p1 10397 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
5752, 56breqtrrd 4010 . . . . . 6 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))
5857ex 114 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (0 ≤ (seq𝑀( + , 𝐹)‘𝑗) → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))))
5958expcom 115 . . . 4 (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑗) → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))))
6059a2d 26 . . 3 (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))))
616, 9, 12, 15, 30, 60fzind2 10174 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)))
623, 61mpcom 36 1 (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444   class class class wbr 3982  wf 5184  cfv 5188  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   + caddc 7756  cle 7934  cz 9191  cuz 9466  ...cfz 9944  ..^cfzo 10077  seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078  df-seqfrec 10381
This theorem is referenced by:  ser3le  10453
  Copyright terms: Public domain W3C validator