Step | Hyp | Ref
| Expression |
1 | | ser3ge0.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 9988 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | fveq2 5496 |
. . . . 5
⊢ (𝑤 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑀)) |
5 | 4 | breq2d 4001 |
. . . 4
⊢ (𝑤 = 𝑀 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑀))) |
6 | 5 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑀 → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑀)))) |
7 | | fveq2 5496 |
. . . . 5
⊢ (𝑤 = 𝑗 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑗)) |
8 | 7 | breq2d 4001 |
. . . 4
⊢ (𝑤 = 𝑗 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗))) |
9 | 8 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑗 → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)))) |
10 | | fveq2 5496 |
. . . . 5
⊢ (𝑤 = (𝑗 + 1) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘(𝑗 + 1))) |
11 | 10 | breq2d 4001 |
. . . 4
⊢ (𝑤 = (𝑗 + 1) → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))) |
12 | 11 | imbi2d 229 |
. . 3
⊢ (𝑤 = (𝑗 + 1) → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))))) |
13 | | fveq2 5496 |
. . . . 5
⊢ (𝑤 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑁)) |
14 | 13 | breq2d 4001 |
. . . 4
⊢ (𝑤 = 𝑁 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑤) ↔ 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))) |
15 | 14 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑤)) ↔ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)))) |
16 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
17 | 16 | breq2d 4001 |
. . . . . 6
⊢ (𝑘 = 𝑀 → (0 ≤ (𝐹‘𝑘) ↔ 0 ≤ (𝐹‘𝑀))) |
18 | | ser3ge0.3 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹‘𝑘)) |
19 | 18 | ralrimiva 2543 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)0 ≤ (𝐹‘𝑘)) |
20 | | eluzfz1 9987 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
21 | 1, 20 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
22 | 17, 19, 21 | rspcdva 2839 |
. . . . 5
⊢ (𝜑 → 0 ≤ (𝐹‘𝑀)) |
23 | | eluzel2 9492 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
24 | 1, 23 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
25 | | ser3ge0.2 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℝ) |
26 | | readdcl 7900 |
. . . . . . 7
⊢ ((𝑘 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑘 + 𝑣) ∈ ℝ) |
27 | 26 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑘 + 𝑣) ∈ ℝ) |
28 | 24, 25, 27 | seq3-1 10416 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
29 | 22, 28 | breqtrrd 4017 |
. . . 4
⊢ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑀)) |
30 | 29 | a1i 9 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑀))) |
31 | | eqid 2170 |
. . . . . . . . . . 11
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
32 | 31, 24, 25, 27 | seqf 10417 |
. . . . . . . . . 10
⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶ℝ) |
33 | 32 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶ℝ) |
34 | | elfzouz 10107 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (ℤ≥‘𝑀)) |
35 | 34 | ad2antlr 486 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
36 | 33, 35 | ffvelrnd 5632 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ) |
37 | | fveq2 5496 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑗 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑗 + 1))) |
38 | 37 | eleq1d 2239 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑗 + 1) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(𝑗 + 1)) ∈ ℝ)) |
39 | 25 | ralrimiva 2543 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) |
40 | 39 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) |
41 | | peano2uz 9542 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
42 | 34, 41 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
43 | 42 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
44 | 38, 40, 43 | rspcdva 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑗 + 1)) ∈ ℝ) |
45 | 44 | adantr 274 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (𝐹‘(𝑗 + 1)) ∈ ℝ) |
46 | | simpr 109 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) |
47 | 37 | breq2d 4001 |
. . . . . . . . 9
⊢ (𝑘 = (𝑗 + 1) → (0 ≤ (𝐹‘𝑘) ↔ 0 ≤ (𝐹‘(𝑗 + 1)))) |
48 | 19 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → ∀𝑘 ∈ (𝑀...𝑁)0 ≤ (𝐹‘𝑘)) |
49 | | fzofzp1 10183 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁)) |
50 | 49 | ad2antlr 486 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (𝑗 + 1) ∈ (𝑀...𝑁)) |
51 | 47, 48, 50 | rspcdva 2839 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ (𝐹‘(𝑗 + 1))) |
52 | 36, 45, 46, 51 | addge0d 8441 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))) |
53 | 25 | adantlr 474 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℝ) |
54 | 53 | adantlr 474 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℝ) |
55 | 26 | adantl 275 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) ∧ (𝑘 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑘 + 𝑣) ∈ ℝ) |
56 | 35, 54, 55 | seq3p1 10418 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))) |
57 | 52, 56 | breqtrrd 4017 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))) |
58 | 57 | ex 114 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (0 ≤ (seq𝑀( + , 𝐹)‘𝑗) → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))) |
59 | 58 | expcom 115 |
. . . 4
⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → (0 ≤ (seq𝑀( + , 𝐹)‘𝑗) → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))))) |
60 | 59 | a2d 26 |
. . 3
⊢ (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑗)) → (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))))) |
61 | 6, 9, 12, 15, 30, 60 | fzind2 10195 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))) |
62 | 3, 61 | mpcom 36 |
1
⊢ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) |