ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemcxze GIF version

Theorem cvg1nlemcxze 11493
Description: Lemma for cvg1n 11497. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
cvg1nlemcxze.c (𝜑𝐶 ∈ ℝ+)
cvg1nlemcxze.x (𝜑𝑋 ∈ ℝ+)
cvg1nlemcxze.z (𝜑𝑍 ∈ ℕ)
cvg1nlemcxze.e (𝜑𝐸 ∈ ℕ)
cvg1nlemcxze.a (𝜑𝐴 ∈ ℕ)
cvg1nlemcxze.1 (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸)
Assertion
Ref Expression
cvg1nlemcxze (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2))

Proof of Theorem cvg1nlemcxze
StepHypRef Expression
1 cvg1nlemcxze.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
21rpcnd 9894 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
3 2cnd 9183 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
4 cvg1nlemcxze.x . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
54rpcnd 9894 . . . . . . 7 (𝜑𝑋 ∈ ℂ)
64rpap0d 9898 . . . . . . 7 (𝜑𝑋 # 0)
72, 3, 5, 6div23apd 8975 . . . . . 6 (𝜑 → ((𝐶 · 2) / 𝑋) = ((𝐶 / 𝑋) · 2))
8 2rp 9854 . . . . . . . . . . . . 13 2 ∈ ℝ+
98a1i 9 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ+)
101, 9rpmulcld 9909 . . . . . . . . . . 11 (𝜑 → (𝐶 · 2) ∈ ℝ+)
1110, 4rpdivcld 9910 . . . . . . . . . 10 (𝜑 → ((𝐶 · 2) / 𝑋) ∈ ℝ+)
12 cvg1nlemcxze.z . . . . . . . . . . 11 (𝜑𝑍 ∈ ℕ)
1312nnrpd 9890 . . . . . . . . . 10 (𝜑𝑍 ∈ ℝ+)
1411, 13rpdivcld 9910 . . . . . . . . 9 (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) ∈ ℝ+)
1514rpred 9892 . . . . . . . 8 (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) ∈ ℝ)
16 cvg1nlemcxze.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ)
1716nnred 9123 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1815, 17readdcld 8176 . . . . . . . 8 (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) ∈ ℝ)
19 cvg1nlemcxze.e . . . . . . . . 9 (𝜑𝐸 ∈ ℕ)
2019nnred 9123 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2116nnrpd 9890 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
2215, 21ltaddrpd 9926 . . . . . . . 8 (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) < ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴))
23 cvg1nlemcxze.1 . . . . . . . 8 (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸)
2415, 18, 20, 22, 23lttrd 8272 . . . . . . 7 (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) < 𝐸)
2511rpred 9892 . . . . . . . 8 (𝜑 → ((𝐶 · 2) / 𝑋) ∈ ℝ)
2625, 20, 13ltdivmul2d 9945 . . . . . . 7 (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) < 𝐸 ↔ ((𝐶 · 2) / 𝑋) < (𝐸 · 𝑍)))
2724, 26mpbid 147 . . . . . 6 (𝜑 → ((𝐶 · 2) / 𝑋) < (𝐸 · 𝑍))
287, 27eqbrtrrd 4107 . . . . 5 (𝜑 → ((𝐶 / 𝑋) · 2) < (𝐸 · 𝑍))
291rpred 9892 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
3029, 4rerpdivcld 9924 . . . . . 6 (𝜑 → (𝐶 / 𝑋) ∈ ℝ)
3119, 12nnmulcld 9159 . . . . . . 7 (𝜑 → (𝐸 · 𝑍) ∈ ℕ)
3231nnred 9123 . . . . . 6 (𝜑 → (𝐸 · 𝑍) ∈ ℝ)
3330, 32, 9ltmuldivd 9940 . . . . 5 (𝜑 → (((𝐶 / 𝑋) · 2) < (𝐸 · 𝑍) ↔ (𝐶 / 𝑋) < ((𝐸 · 𝑍) / 2)))
3428, 33mpbid 147 . . . 4 (𝜑 → (𝐶 / 𝑋) < ((𝐸 · 𝑍) / 2))
3529, 9, 32, 4lt2mul2divd 9961 . . . 4 (𝜑 → ((𝐶 · 2) < ((𝐸 · 𝑍) · 𝑋) ↔ (𝐶 / 𝑋) < ((𝐸 · 𝑍) / 2)))
3634, 35mpbird 167 . . 3 (𝜑 → (𝐶 · 2) < ((𝐸 · 𝑍) · 𝑋))
3731nncnd 9124 . . . 4 (𝜑 → (𝐸 · 𝑍) ∈ ℂ)
3837, 5mulcomd 8168 . . 3 (𝜑 → ((𝐸 · 𝑍) · 𝑋) = (𝑋 · (𝐸 · 𝑍)))
3936, 38breqtrd 4109 . 2 (𝜑 → (𝐶 · 2) < (𝑋 · (𝐸 · 𝑍)))
404rpred 9892 . . 3 (𝜑𝑋 ∈ ℝ)
4131nnrpd 9890 . . 3 (𝜑 → (𝐸 · 𝑍) ∈ ℝ+)
4229, 9, 40, 41lt2mul2divd 9961 . 2 (𝜑 → ((𝐶 · 2) < (𝑋 · (𝐸 · 𝑍)) ↔ (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2)))
4339, 42mpbid 147 1 (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200   class class class wbr 4083  (class class class)co 6001   + caddc 8002   · cmul 8004   < clt 8181   / cdiv 8819  cn 9110  2c2 9161  +crp 9849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-rp 9850
This theorem is referenced by:  cvg1nlemres  11496
  Copyright terms: Public domain W3C validator