ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemcxze GIF version

Theorem cvg1nlemcxze 11293
Description: Lemma for cvg1n 11297. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
cvg1nlemcxze.c (𝜑𝐶 ∈ ℝ+)
cvg1nlemcxze.x (𝜑𝑋 ∈ ℝ+)
cvg1nlemcxze.z (𝜑𝑍 ∈ ℕ)
cvg1nlemcxze.e (𝜑𝐸 ∈ ℕ)
cvg1nlemcxze.a (𝜑𝐴 ∈ ℕ)
cvg1nlemcxze.1 (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸)
Assertion
Ref Expression
cvg1nlemcxze (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2))

Proof of Theorem cvg1nlemcxze
StepHypRef Expression
1 cvg1nlemcxze.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
21rpcnd 9820 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
3 2cnd 9109 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
4 cvg1nlemcxze.x . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
54rpcnd 9820 . . . . . . 7 (𝜑𝑋 ∈ ℂ)
64rpap0d 9824 . . . . . . 7 (𝜑𝑋 # 0)
72, 3, 5, 6div23apd 8901 . . . . . 6 (𝜑 → ((𝐶 · 2) / 𝑋) = ((𝐶 / 𝑋) · 2))
8 2rp 9780 . . . . . . . . . . . . 13 2 ∈ ℝ+
98a1i 9 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ+)
101, 9rpmulcld 9835 . . . . . . . . . . 11 (𝜑 → (𝐶 · 2) ∈ ℝ+)
1110, 4rpdivcld 9836 . . . . . . . . . 10 (𝜑 → ((𝐶 · 2) / 𝑋) ∈ ℝ+)
12 cvg1nlemcxze.z . . . . . . . . . . 11 (𝜑𝑍 ∈ ℕ)
1312nnrpd 9816 . . . . . . . . . 10 (𝜑𝑍 ∈ ℝ+)
1411, 13rpdivcld 9836 . . . . . . . . 9 (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) ∈ ℝ+)
1514rpred 9818 . . . . . . . 8 (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) ∈ ℝ)
16 cvg1nlemcxze.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ)
1716nnred 9049 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1815, 17readdcld 8102 . . . . . . . 8 (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) ∈ ℝ)
19 cvg1nlemcxze.e . . . . . . . . 9 (𝜑𝐸 ∈ ℕ)
2019nnred 9049 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2116nnrpd 9816 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
2215, 21ltaddrpd 9852 . . . . . . . 8 (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) < ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴))
23 cvg1nlemcxze.1 . . . . . . . 8 (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸)
2415, 18, 20, 22, 23lttrd 8198 . . . . . . 7 (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) < 𝐸)
2511rpred 9818 . . . . . . . 8 (𝜑 → ((𝐶 · 2) / 𝑋) ∈ ℝ)
2625, 20, 13ltdivmul2d 9871 . . . . . . 7 (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) < 𝐸 ↔ ((𝐶 · 2) / 𝑋) < (𝐸 · 𝑍)))
2724, 26mpbid 147 . . . . . 6 (𝜑 → ((𝐶 · 2) / 𝑋) < (𝐸 · 𝑍))
287, 27eqbrtrrd 4068 . . . . 5 (𝜑 → ((𝐶 / 𝑋) · 2) < (𝐸 · 𝑍))
291rpred 9818 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
3029, 4rerpdivcld 9850 . . . . . 6 (𝜑 → (𝐶 / 𝑋) ∈ ℝ)
3119, 12nnmulcld 9085 . . . . . . 7 (𝜑 → (𝐸 · 𝑍) ∈ ℕ)
3231nnred 9049 . . . . . 6 (𝜑 → (𝐸 · 𝑍) ∈ ℝ)
3330, 32, 9ltmuldivd 9866 . . . . 5 (𝜑 → (((𝐶 / 𝑋) · 2) < (𝐸 · 𝑍) ↔ (𝐶 / 𝑋) < ((𝐸 · 𝑍) / 2)))
3428, 33mpbid 147 . . . 4 (𝜑 → (𝐶 / 𝑋) < ((𝐸 · 𝑍) / 2))
3529, 9, 32, 4lt2mul2divd 9887 . . . 4 (𝜑 → ((𝐶 · 2) < ((𝐸 · 𝑍) · 𝑋) ↔ (𝐶 / 𝑋) < ((𝐸 · 𝑍) / 2)))
3634, 35mpbird 167 . . 3 (𝜑 → (𝐶 · 2) < ((𝐸 · 𝑍) · 𝑋))
3731nncnd 9050 . . . 4 (𝜑 → (𝐸 · 𝑍) ∈ ℂ)
3837, 5mulcomd 8094 . . 3 (𝜑 → ((𝐸 · 𝑍) · 𝑋) = (𝑋 · (𝐸 · 𝑍)))
3936, 38breqtrd 4070 . 2 (𝜑 → (𝐶 · 2) < (𝑋 · (𝐸 · 𝑍)))
404rpred 9818 . . 3 (𝜑𝑋 ∈ ℝ)
4131nnrpd 9816 . . 3 (𝜑 → (𝐸 · 𝑍) ∈ ℝ+)
4229, 9, 40, 41lt2mul2divd 9887 . 2 (𝜑 → ((𝐶 · 2) < (𝑋 · (𝐸 · 𝑍)) ↔ (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2)))
4339, 42mpbid 147 1 (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176   class class class wbr 4044  (class class class)co 5944   + caddc 7928   · cmul 7930   < clt 8107   / cdiv 8745  cn 9036  2c2 9087  +crp 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-rp 9776
This theorem is referenced by:  cvg1nlemres  11296
  Copyright terms: Public domain W3C validator