Proof of Theorem cvg1nlemcxze
Step | Hyp | Ref
| Expression |
1 | | cvg1nlemcxze.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
2 | 1 | rpcnd 9655 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℂ) |
3 | | 2cnd 8951 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℂ) |
4 | | cvg1nlemcxze.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
5 | 4 | rpcnd 9655 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℂ) |
6 | 4 | rpap0d 9659 |
. . . . . . 7
⊢ (𝜑 → 𝑋 # 0) |
7 | 2, 3, 5, 6 | div23apd 8745 |
. . . . . 6
⊢ (𝜑 → ((𝐶 · 2) / 𝑋) = ((𝐶 / 𝑋) · 2)) |
8 | | 2rp 9615 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ+ |
9 | 8 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℝ+) |
10 | 1, 9 | rpmulcld 9670 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 · 2) ∈
ℝ+) |
11 | 10, 4 | rpdivcld 9671 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶 · 2) / 𝑋) ∈
ℝ+) |
12 | | cvg1nlemcxze.z |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍 ∈ ℕ) |
13 | 12 | nnrpd 9651 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈
ℝ+) |
14 | 11, 13 | rpdivcld 9671 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) ∈
ℝ+) |
15 | 14 | rpred 9653 |
. . . . . . . 8
⊢ (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) ∈ ℝ) |
16 | | cvg1nlemcxze.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℕ) |
17 | 16 | nnred 8891 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
18 | 15, 17 | readdcld 7949 |
. . . . . . . 8
⊢ (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) ∈ ℝ) |
19 | | cvg1nlemcxze.e |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ ℕ) |
20 | 19 | nnred 8891 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ ℝ) |
21 | 16 | nnrpd 9651 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
22 | 15, 21 | ltaddrpd 9687 |
. . . . . . . 8
⊢ (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) < ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴)) |
23 | | cvg1nlemcxze.1 |
. . . . . . . 8
⊢ (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸) |
24 | 15, 18, 20, 22, 23 | lttrd 8045 |
. . . . . . 7
⊢ (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) < 𝐸) |
25 | 11 | rpred 9653 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶 · 2) / 𝑋) ∈ ℝ) |
26 | 25, 20, 13 | ltdivmul2d 9706 |
. . . . . . 7
⊢ (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) < 𝐸 ↔ ((𝐶 · 2) / 𝑋) < (𝐸 · 𝑍))) |
27 | 24, 26 | mpbid 146 |
. . . . . 6
⊢ (𝜑 → ((𝐶 · 2) / 𝑋) < (𝐸 · 𝑍)) |
28 | 7, 27 | eqbrtrrd 4013 |
. . . . 5
⊢ (𝜑 → ((𝐶 / 𝑋) · 2) < (𝐸 · 𝑍)) |
29 | 1 | rpred 9653 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℝ) |
30 | 29, 4 | rerpdivcld 9685 |
. . . . . 6
⊢ (𝜑 → (𝐶 / 𝑋) ∈ ℝ) |
31 | 19, 12 | nnmulcld 8927 |
. . . . . . 7
⊢ (𝜑 → (𝐸 · 𝑍) ∈ ℕ) |
32 | 31 | nnred 8891 |
. . . . . 6
⊢ (𝜑 → (𝐸 · 𝑍) ∈ ℝ) |
33 | 30, 32, 9 | ltmuldivd 9701 |
. . . . 5
⊢ (𝜑 → (((𝐶 / 𝑋) · 2) < (𝐸 · 𝑍) ↔ (𝐶 / 𝑋) < ((𝐸 · 𝑍) / 2))) |
34 | 28, 33 | mpbid 146 |
. . . 4
⊢ (𝜑 → (𝐶 / 𝑋) < ((𝐸 · 𝑍) / 2)) |
35 | 29, 9, 32, 4 | lt2mul2divd 9722 |
. . . 4
⊢ (𝜑 → ((𝐶 · 2) < ((𝐸 · 𝑍) · 𝑋) ↔ (𝐶 / 𝑋) < ((𝐸 · 𝑍) / 2))) |
36 | 34, 35 | mpbird 166 |
. . 3
⊢ (𝜑 → (𝐶 · 2) < ((𝐸 · 𝑍) · 𝑋)) |
37 | 31 | nncnd 8892 |
. . . 4
⊢ (𝜑 → (𝐸 · 𝑍) ∈ ℂ) |
38 | 37, 5 | mulcomd 7941 |
. . 3
⊢ (𝜑 → ((𝐸 · 𝑍) · 𝑋) = (𝑋 · (𝐸 · 𝑍))) |
39 | 36, 38 | breqtrd 4015 |
. 2
⊢ (𝜑 → (𝐶 · 2) < (𝑋 · (𝐸 · 𝑍))) |
40 | 4 | rpred 9653 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ℝ) |
41 | 31 | nnrpd 9651 |
. . 3
⊢ (𝜑 → (𝐸 · 𝑍) ∈
ℝ+) |
42 | 29, 9, 40, 41 | lt2mul2divd 9722 |
. 2
⊢ (𝜑 → ((𝐶 · 2) < (𝑋 · (𝐸 · 𝑍)) ↔ (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2))) |
43 | 39, 42 | mpbid 146 |
1
⊢ (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2)) |