ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemcxze GIF version

Theorem cvg1nlemcxze 10380
Description: Lemma for cvg1n 10384. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
Hypotheses
Ref Expression
cvg1nlemcxze.c (𝜑𝐶 ∈ ℝ+)
cvg1nlemcxze.x (𝜑𝑋 ∈ ℝ+)
cvg1nlemcxze.z (𝜑𝑍 ∈ ℕ)
cvg1nlemcxze.e (𝜑𝐸 ∈ ℕ)
cvg1nlemcxze.a (𝜑𝐴 ∈ ℕ)
cvg1nlemcxze.1 (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸)
Assertion
Ref Expression
cvg1nlemcxze (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2))

Proof of Theorem cvg1nlemcxze
StepHypRef Expression
1 cvg1nlemcxze.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
21rpcnd 9144 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
3 2cnd 8466 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
4 cvg1nlemcxze.x . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
54rpcnd 9144 . . . . . . 7 (𝜑𝑋 ∈ ℂ)
64rpap0d 9148 . . . . . . 7 (𝜑𝑋 # 0)
72, 3, 5, 6div23apd 8267 . . . . . 6 (𝜑 → ((𝐶 · 2) / 𝑋) = ((𝐶 / 𝑋) · 2))
8 2rp 9108 . . . . . . . . . . . . 13 2 ∈ ℝ+
98a1i 9 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ+)
101, 9rpmulcld 9159 . . . . . . . . . . 11 (𝜑 → (𝐶 · 2) ∈ ℝ+)
1110, 4rpdivcld 9160 . . . . . . . . . 10 (𝜑 → ((𝐶 · 2) / 𝑋) ∈ ℝ+)
12 cvg1nlemcxze.z . . . . . . . . . . 11 (𝜑𝑍 ∈ ℕ)
1312nnrpd 9141 . . . . . . . . . 10 (𝜑𝑍 ∈ ℝ+)
1411, 13rpdivcld 9160 . . . . . . . . 9 (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) ∈ ℝ+)
1514rpred 9142 . . . . . . . 8 (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) ∈ ℝ)
16 cvg1nlemcxze.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ)
1716nnred 8407 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1815, 17readdcld 7496 . . . . . . . 8 (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) ∈ ℝ)
19 cvg1nlemcxze.e . . . . . . . . 9 (𝜑𝐸 ∈ ℕ)
2019nnred 8407 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2116nnrpd 9141 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
2215, 21ltaddrpd 9176 . . . . . . . 8 (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) < ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴))
23 cvg1nlemcxze.1 . . . . . . . 8 (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸)
2415, 18, 20, 22, 23lttrd 7588 . . . . . . 7 (𝜑 → (((𝐶 · 2) / 𝑋) / 𝑍) < 𝐸)
2511rpred 9142 . . . . . . . 8 (𝜑 → ((𝐶 · 2) / 𝑋) ∈ ℝ)
2625, 20, 13ltdivmul2d 9195 . . . . . . 7 (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) < 𝐸 ↔ ((𝐶 · 2) / 𝑋) < (𝐸 · 𝑍)))
2724, 26mpbid 145 . . . . . 6 (𝜑 → ((𝐶 · 2) / 𝑋) < (𝐸 · 𝑍))
287, 27eqbrtrrd 3859 . . . . 5 (𝜑 → ((𝐶 / 𝑋) · 2) < (𝐸 · 𝑍))
291rpred 9142 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
3029, 4rerpdivcld 9174 . . . . . 6 (𝜑 → (𝐶 / 𝑋) ∈ ℝ)
3119, 12nnmulcld 8442 . . . . . . 7 (𝜑 → (𝐸 · 𝑍) ∈ ℕ)
3231nnred 8407 . . . . . 6 (𝜑 → (𝐸 · 𝑍) ∈ ℝ)
3330, 32, 9ltmuldivd 9190 . . . . 5 (𝜑 → (((𝐶 / 𝑋) · 2) < (𝐸 · 𝑍) ↔ (𝐶 / 𝑋) < ((𝐸 · 𝑍) / 2)))
3428, 33mpbid 145 . . . 4 (𝜑 → (𝐶 / 𝑋) < ((𝐸 · 𝑍) / 2))
3529, 9, 32, 4lt2mul2divd 9205 . . . 4 (𝜑 → ((𝐶 · 2) < ((𝐸 · 𝑍) · 𝑋) ↔ (𝐶 / 𝑋) < ((𝐸 · 𝑍) / 2)))
3634, 35mpbird 165 . . 3 (𝜑 → (𝐶 · 2) < ((𝐸 · 𝑍) · 𝑋))
3731nncnd 8408 . . . 4 (𝜑 → (𝐸 · 𝑍) ∈ ℂ)
3837, 5mulcomd 7488 . . 3 (𝜑 → ((𝐸 · 𝑍) · 𝑋) = (𝑋 · (𝐸 · 𝑍)))
3936, 38breqtrd 3861 . 2 (𝜑 → (𝐶 · 2) < (𝑋 · (𝐸 · 𝑍)))
404rpred 9142 . . 3 (𝜑𝑋 ∈ ℝ)
4131nnrpd 9141 . . 3 (𝜑 → (𝐸 · 𝑍) ∈ ℝ+)
4229, 9, 40, 41lt2mul2divd 9205 . 2 (𝜑 → ((𝐶 · 2) < (𝑋 · (𝐸 · 𝑍)) ↔ (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2)))
4339, 42mpbid 145 1 (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1438   class class class wbr 3837  (class class class)co 5634   + caddc 7332   · cmul 7334   < clt 7501   / cdiv 8113  cn 8394  2c2 8444  +crp 9103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-rp 9104
This theorem is referenced by:  cvg1nlemres  10383
  Copyright terms: Public domain W3C validator