ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc2 GIF version

Theorem resqrexlemcalc2 11521
Description: Lemma for resqrex 11532. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc2 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑁)↑2) − 𝐴) / 4))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc2
StepHypRef Expression
1 resqrexlemex.seq . . 3 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . 3 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . 3 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemcalc1 11520 . 2 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
51, 2, 3resqrexlemf 11513 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
65ffvelcdmda 5769 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
76rpred 9888 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
87resqcld 10916 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℝ)
92adantr 276 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
108, 9resubcld 8523 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ)
116rpap0d 9894 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) # 0)
127, 11sqgt0apd 10918 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < ((𝐹𝑁)↑2))
138, 12elrpd 9885 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℝ+)
148, 9readdcld 8172 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + 𝐴) ∈ ℝ)
153adantr 276 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → 0 ≤ 𝐴)
168, 9addge01d 8676 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (0 ≤ 𝐴 ↔ ((𝐹𝑁)↑2) ≤ (((𝐹𝑁)↑2) + 𝐴)))
1715, 16mpbid 147 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ≤ (((𝐹𝑁)↑2) + 𝐴))
188, 14, 9, 17lesub1dd 8704 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ ((((𝐹𝑁)↑2) + 𝐴) − 𝐴))
198recnd 8171 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℂ)
209recnd 8171 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
2119, 20pncand 8454 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + 𝐴) − 𝐴) = ((𝐹𝑁)↑2))
2218, 21breqtrd 4108 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ ((𝐹𝑁)↑2))
2310, 8, 13, 22lediv1dd 9947 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) ≤ (((𝐹𝑁)↑2) / ((𝐹𝑁)↑2)))
248, 12gt0ap0d 8772 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) # 0)
2519, 24dividapd 8929 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) / ((𝐹𝑁)↑2)) = 1)
2623, 25breqtrd 4108 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) ≤ 1)
2710, 8, 24redivclapd 8978 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) ∈ ℝ)
28 1red 8157 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 1 ∈ ℝ)
291, 2, 3resqrexlemover 11516 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐴 < ((𝐹𝑁)↑2))
30 difrp 9884 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ ((𝐹𝑁)↑2) ∈ ℝ) → (𝐴 < ((𝐹𝑁)↑2) ↔ (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ+))
319, 8, 30syl2anc 411 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (𝐴 < ((𝐹𝑁)↑2) ↔ (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ+))
3229, 31mpbid 147 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ+)
33 4re 9183 . . . . . . . 8 4 ∈ ℝ
3433a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℝ)
35 4pos 9203 . . . . . . . 8 0 < 4
3635a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < 4)
3734, 36elrpd 9885 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℝ+)
3832, 37rpdivcld 9906 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / 4) ∈ ℝ+)
3927, 28, 38lemul1d 9932 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) ≤ 1 ↔ (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) · ((((𝐹𝑁)↑2) − 𝐴) / 4)) ≤ (1 · ((((𝐹𝑁)↑2) − 𝐴) / 4))))
4026, 39mpbid 147 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) · ((((𝐹𝑁)↑2) − 𝐴) / 4)) ≤ (1 · ((((𝐹𝑁)↑2) − 𝐴) / 4)))
4110recnd 8171 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℂ)
4234recnd 8171 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℂ)
4334, 36gt0ap0d 8772 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 4 # 0)
4441, 19, 41, 42, 24, 43divmuldivapd 8975 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) · ((((𝐹𝑁)↑2) − 𝐴) / 4)) = (((((𝐹𝑁)↑2) − 𝐴) · (((𝐹𝑁)↑2) − 𝐴)) / (((𝐹𝑁)↑2) · 4)))
4541sqvald 10887 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = ((((𝐹𝑁)↑2) − 𝐴) · (((𝐹𝑁)↑2) − 𝐴)))
4642, 19mulcomd 8164 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (4 · ((𝐹𝑁)↑2)) = (((𝐹𝑁)↑2) · 4))
4745, 46oveq12d 6018 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))) = (((((𝐹𝑁)↑2) − 𝐴) · (((𝐹𝑁)↑2) − 𝐴)) / (((𝐹𝑁)↑2) · 4)))
4844, 47eqtr4d 2265 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴) / ((𝐹𝑁)↑2)) · ((((𝐹𝑁)↑2) − 𝐴) / 4)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
4938rpcnd 9890 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴) / 4) ∈ ℂ)
5049mulid2d 8161 . . 3 ((𝜑𝑁 ∈ ℕ) → (1 · ((((𝐹𝑁)↑2) − 𝐴) / 4)) = ((((𝐹𝑁)↑2) − 𝐴) / 4))
5140, 48, 503brtr3d 4113 . 2 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))) ≤ ((((𝐹𝑁)↑2) − 𝐴) / 4))
524, 51eqbrtrd 4104 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑁)↑2) − 𝐴) / 4))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {csn 3666   class class class wbr 4082   × cxp 4716  cfv 5317  (class class class)co 6000  cmpo 6002  cr 7994  0cc0 7995  1c1 7996   + caddc 7998   · cmul 8000   < clt 8177  cle 8178  cmin 8313   / cdiv 8815  cn 9106  2c2 9157  4c4 9159  +crp 9845  seqcseq 10664  cexp 10755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-seqfrec 10665  df-exp 10756
This theorem is referenced by:  resqrexlemcalc3  11522
  Copyright terms: Public domain W3C validator