ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  effsumlt GIF version

Theorem effsumlt 11633
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
effsumlt.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
effsumlt.2 (𝜑𝐴 ∈ ℝ+)
effsumlt.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
effsumlt (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝑁(𝑛)

Proof of Theorem effsumlt
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9500 . . . . 5 0 = (ℤ‘0)
2 0zd 9203 . . . . 5 (𝜑 → 0 ∈ ℤ)
3 effsumlt.2 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
43rpcnd 9634 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
5 effsumlt.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
65eftvalcn 11598 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
74, 6sylan 281 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
83rpred 9632 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9 reeftcl 11596 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
108, 9sylan 281 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
117, 10eqeltrd 2243 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ)
121, 2, 11serfre 10410 . . . 4 (𝜑 → seq0( + , 𝐹):ℕ0⟶ℝ)
13 effsumlt.3 . . . 4 (𝜑𝑁 ∈ ℕ0)
1412, 13ffvelrnd 5621 . . 3 (𝜑 → (seq0( + , 𝐹)‘𝑁) ∈ ℝ)
15 eqid 2165 . . . 4 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
16 peano2nn0 9154 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1713, 16syl 14 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℕ0)
18 eqidd 2166 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
19 nn0z 9211 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
20 rpexpcl 10474 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ ℤ) → (𝐴𝑘) ∈ ℝ+)
213, 19, 20syl2an 287 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ+)
22 faccl 10648 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2322adantl 275 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
2423nnrpd 9630 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
2521, 24rpdivcld 9650 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+)
267, 25eqeltrd 2243 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
275efcllem 11600 . . . . 5 (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
284, 27syl 14 . . . 4 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
291, 15, 17, 18, 26, 28isumrpcl 11435 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘) ∈ ℝ+)
3014, 29ltaddrpd 9666 . 2 (𝜑 → (seq0( + , 𝐹)‘𝑁) < ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
315efval2 11606 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
324, 31syl 14 . . 3 (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
3311recnd 7927 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
341, 15, 17, 18, 33, 28isumsplit 11432 . . 3 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
3513nn0cnd 9169 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
36 ax-1cn 7846 . . . . . . . 8 1 ∈ ℂ
37 pncan 8104 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
3835, 36, 37sylancl 410 . . . . . . 7 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
3938oveq2d 5858 . . . . . 6 (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
4039sumeq1d 11307 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑁)(𝐹𝑘))
41 eqidd 2166 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = (𝐹𝑘))
4213, 1eleqtrdi 2259 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
43 elnn0uz 9503 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
4443, 33sylan2br 286 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) ∈ ℂ)
4541, 42, 44fsum3ser 11338 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) = (seq0( + , 𝐹)‘𝑁))
4640, 45eqtrd 2198 . . . 4 (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) = (seq0( + , 𝐹)‘𝑁))
4746oveq1d 5857 . . 3 (𝜑 → (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
4832, 34, 473eqtrd 2202 . 2 (𝜑 → (exp‘𝐴) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
4930, 48breqtrrd 4010 1 (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136   class class class wbr 3982  cmpt 4043  dom cdm 4604  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   < clt 7933  cmin 8069   / cdiv 8568  cn 8857  0cn0 9114  cz 9191  cuz 9466  +crp 9589  ...cfz 9944  seqcseq 10380  cexp 10454  !cfa 10638  cli 11219  Σcsu 11294  expce 11583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589
This theorem is referenced by:  efgt1p2  11636  efgt1p  11637
  Copyright terms: Public domain W3C validator