ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  effsumlt GIF version

Theorem effsumlt 11387
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
effsumlt.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
effsumlt.2 (𝜑𝐴 ∈ ℝ+)
effsumlt.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
effsumlt (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝑁(𝑛)

Proof of Theorem effsumlt
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9353 . . . . 5 0 = (ℤ‘0)
2 0zd 9059 . . . . 5 (𝜑 → 0 ∈ ℤ)
3 effsumlt.2 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
43rpcnd 9478 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
5 effsumlt.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
65eftvalcn 11352 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
74, 6sylan 281 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
83rpred 9476 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9 reeftcl 11350 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
108, 9sylan 281 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
117, 10eqeltrd 2214 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ)
121, 2, 11serfre 10241 . . . 4 (𝜑 → seq0( + , 𝐹):ℕ0⟶ℝ)
13 effsumlt.3 . . . 4 (𝜑𝑁 ∈ ℕ0)
1412, 13ffvelrnd 5549 . . 3 (𝜑 → (seq0( + , 𝐹)‘𝑁) ∈ ℝ)
15 eqid 2137 . . . 4 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
16 peano2nn0 9010 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1713, 16syl 14 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℕ0)
18 eqidd 2138 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
19 nn0z 9067 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
20 rpexpcl 10305 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ ℤ) → (𝐴𝑘) ∈ ℝ+)
213, 19, 20syl2an 287 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ+)
22 faccl 10474 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2322adantl 275 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
2423nnrpd 9475 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
2521, 24rpdivcld 9494 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+)
267, 25eqeltrd 2214 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
275efcllem 11354 . . . . 5 (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
284, 27syl 14 . . . 4 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
291, 15, 17, 18, 26, 28isumrpcl 11256 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘) ∈ ℝ+)
3014, 29ltaddrpd 9510 . 2 (𝜑 → (seq0( + , 𝐹)‘𝑁) < ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
315efval2 11360 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
324, 31syl 14 . . 3 (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
3311recnd 7787 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
341, 15, 17, 18, 33, 28isumsplit 11253 . . 3 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
3513nn0cnd 9025 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
36 ax-1cn 7706 . . . . . . . 8 1 ∈ ℂ
37 pncan 7961 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
3835, 36, 37sylancl 409 . . . . . . 7 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
3938oveq2d 5783 . . . . . 6 (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
4039sumeq1d 11128 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑁)(𝐹𝑘))
41 eqidd 2138 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = (𝐹𝑘))
4213, 1eleqtrdi 2230 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
43 elnn0uz 9356 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
4443, 33sylan2br 286 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) ∈ ℂ)
4541, 42, 44fsum3ser 11159 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) = (seq0( + , 𝐹)‘𝑁))
4640, 45eqtrd 2170 . . . 4 (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) = (seq0( + , 𝐹)‘𝑁))
4746oveq1d 5782 . . 3 (𝜑 → (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
4832, 34, 473eqtrd 2174 . 2 (𝜑 → (exp‘𝐴) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
4930, 48breqtrrd 3951 1 (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480   class class class wbr 3924  cmpt 3984  dom cdm 4534  cfv 5118  (class class class)co 5767  cc 7611  cr 7612  0cc0 7613  1c1 7614   + caddc 7616   < clt 7793  cmin 7926   / cdiv 8425  cn 8713  0cn0 8970  cz 9047  cuz 9319  +crp 9434  ...cfz 9783  seqcseq 10211  cexp 10285  !cfa 10464  cli 11040  Σcsu 11115  expce 11337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-ico 9670  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-fac 10465  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116  df-ef 11343
This theorem is referenced by:  efgt1p2  11390  efgt1p  11391
  Copyright terms: Public domain W3C validator