![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > effsumlt | GIF version |
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
Ref | Expression |
---|---|
effsumlt.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
effsumlt.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
effsumlt.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
effsumlt | ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 9627 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 9329 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | effsumlt.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
4 | 3 | rpcnd 9764 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
5 | effsumlt.1 | . . . . . . . 8 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
6 | 5 | eftvalcn 11800 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
7 | 4, 6 | sylan 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
8 | 3 | rpred 9762 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
9 | reeftcl 11798 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) | |
10 | 8, 9 | sylan 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) |
11 | 7, 10 | eqeltrd 2270 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℝ) |
12 | 1, 2, 11 | serfre 10555 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐹):ℕ0⟶ℝ) |
13 | effsumlt.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
14 | 12, 13 | ffvelcdmd 5694 | . . 3 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) ∈ ℝ) |
15 | eqid 2193 | . . . 4 ⊢ (ℤ≥‘(𝑁 + 1)) = (ℤ≥‘(𝑁 + 1)) | |
16 | peano2nn0 9280 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
17 | 13, 16 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ ℕ0) |
18 | eqidd 2194 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
19 | nn0z 9337 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
20 | rpexpcl 10629 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑘) ∈ ℝ+) | |
21 | 3, 19, 20 | syl2an 289 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ+) |
22 | faccl 10806 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ) | |
23 | 22 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ) |
24 | 23 | nnrpd 9760 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+) |
25 | 21, 24 | rpdivcld 9780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ+) |
26 | 7, 25 | eqeltrd 2270 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℝ+) |
27 | 5 | efcllem 11802 | . . . . 5 ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) |
28 | 4, 27 | syl 14 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) |
29 | 1, 15, 17, 18, 26, 28 | isumrpcl 11637 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘) ∈ ℝ+) |
30 | 14, 29 | ltaddrpd 9796 | . 2 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
31 | 5 | efval2 11808 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
32 | 4, 31 | syl 14 | . . 3 ⊢ (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
33 | 11 | recnd 8048 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
34 | 1, 15, 17, 18, 33, 28 | isumsplit 11634 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
35 | 13 | nn0cnd 9295 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
36 | ax-1cn 7965 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
37 | pncan 8225 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁) | |
38 | 35, 36, 37 | sylancl 413 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
39 | 38 | oveq2d 5934 | . . . . . 6 ⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
40 | 39 | sumeq1d 11509 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) = Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘)) |
41 | eqidd 2194 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘0)) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
42 | 13, 1 | eleqtrdi 2286 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
43 | elnn0uz 9630 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 ↔ 𝑘 ∈ (ℤ≥‘0)) | |
44 | 43, 33 | sylan2br 288 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘0)) → (𝐹‘𝑘) ∈ ℂ) |
45 | 41, 42, 44 | fsum3ser 11540 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘) = (seq0( + , 𝐹)‘𝑁)) |
46 | 40, 45 | eqtrd 2226 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) = (seq0( + , 𝐹)‘𝑁)) |
47 | 46 | oveq1d 5933 | . . 3 ⊢ (𝜑 → (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘)) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
48 | 32, 34, 47 | 3eqtrd 2230 | . 2 ⊢ (𝜑 → (exp‘𝐴) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
49 | 30, 48 | breqtrrd 4057 | 1 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ↦ cmpt 4090 dom cdm 4659 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 ℝcr 7871 0cc0 7872 1c1 7873 + caddc 7875 < clt 8054 − cmin 8190 / cdiv 8691 ℕcn 8982 ℕ0cn0 9240 ℤcz 9317 ℤ≥cuz 9592 ℝ+crp 9719 ...cfz 10074 seqcseq 10518 ↑cexp 10609 !cfa 10796 ⇝ cli 11421 Σcsu 11496 expce 11785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-ico 9960 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-fac 10797 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 df-ef 11791 |
This theorem is referenced by: efgt1p2 11838 efgt1p 11839 |
Copyright terms: Public domain | W3C validator |