Step | Hyp | Ref
| Expression |
1 | | nn0uz 9564 |
. . . . 5
β’
β0 = (β€β₯β0) |
2 | | 0zd 9267 |
. . . . 5
β’ (π β 0 β
β€) |
3 | | effsumlt.2 |
. . . . . . . 8
β’ (π β π΄ β
β+) |
4 | 3 | rpcnd 9700 |
. . . . . . 7
β’ (π β π΄ β β) |
5 | | effsumlt.1 |
. . . . . . . 8
β’ πΉ = (π β β0 β¦ ((π΄βπ) / (!βπ))) |
6 | 5 | eftvalcn 11667 |
. . . . . . 7
β’ ((π΄ β β β§ π β β0)
β (πΉβπ) = ((π΄βπ) / (!βπ))) |
7 | 4, 6 | sylan 283 |
. . . . . 6
β’ ((π β§ π β β0) β (πΉβπ) = ((π΄βπ) / (!βπ))) |
8 | 3 | rpred 9698 |
. . . . . . 7
β’ (π β π΄ β β) |
9 | | reeftcl 11665 |
. . . . . . 7
β’ ((π΄ β β β§ π β β0)
β ((π΄βπ) / (!βπ)) β β) |
10 | 8, 9 | sylan 283 |
. . . . . 6
β’ ((π β§ π β β0) β ((π΄βπ) / (!βπ)) β β) |
11 | 7, 10 | eqeltrd 2254 |
. . . . 5
β’ ((π β§ π β β0) β (πΉβπ) β β) |
12 | 1, 2, 11 | serfre 10477 |
. . . 4
β’ (π β seq0( + , πΉ):β0βΆβ) |
13 | | effsumlt.3 |
. . . 4
β’ (π β π β
β0) |
14 | 12, 13 | ffvelcdmd 5654 |
. . 3
β’ (π β (seq0( + , πΉ)βπ) β β) |
15 | | eqid 2177 |
. . . 4
β’
(β€β₯β(π + 1)) =
(β€β₯β(π + 1)) |
16 | | peano2nn0 9218 |
. . . . 5
β’ (π β β0
β (π + 1) β
β0) |
17 | 13, 16 | syl 14 |
. . . 4
β’ (π β (π + 1) β
β0) |
18 | | eqidd 2178 |
. . . 4
β’ ((π β§ π β β0) β (πΉβπ) = (πΉβπ)) |
19 | | nn0z 9275 |
. . . . . . 7
β’ (π β β0
β π β
β€) |
20 | | rpexpcl 10541 |
. . . . . . 7
β’ ((π΄ β β+
β§ π β β€)
β (π΄βπ) β
β+) |
21 | 3, 19, 20 | syl2an 289 |
. . . . . 6
β’ ((π β§ π β β0) β (π΄βπ) β
β+) |
22 | | faccl 10717 |
. . . . . . . 8
β’ (π β β0
β (!βπ) β
β) |
23 | 22 | adantl 277 |
. . . . . . 7
β’ ((π β§ π β β0) β
(!βπ) β
β) |
24 | 23 | nnrpd 9696 |
. . . . . 6
β’ ((π β§ π β β0) β
(!βπ) β
β+) |
25 | 21, 24 | rpdivcld 9716 |
. . . . 5
β’ ((π β§ π β β0) β ((π΄βπ) / (!βπ)) β
β+) |
26 | 7, 25 | eqeltrd 2254 |
. . . 4
β’ ((π β§ π β β0) β (πΉβπ) β
β+) |
27 | 5 | efcllem 11669 |
. . . . 5
β’ (π΄ β β β seq0( + ,
πΉ) β dom β
) |
28 | 4, 27 | syl 14 |
. . . 4
β’ (π β seq0( + , πΉ) β dom β
) |
29 | 1, 15, 17, 18, 26, 28 | isumrpcl 11504 |
. . 3
β’ (π β Ξ£π β (β€β₯β(π + 1))(πΉβπ) β
β+) |
30 | 14, 29 | ltaddrpd 9732 |
. 2
β’ (π β (seq0( + , πΉ)βπ) < ((seq0( + , πΉ)βπ) + Ξ£π β (β€β₯β(π + 1))(πΉβπ))) |
31 | 5 | efval2 11675 |
. . . 4
β’ (π΄ β β β
(expβπ΄) =
Ξ£π β
β0 (πΉβπ)) |
32 | 4, 31 | syl 14 |
. . 3
β’ (π β (expβπ΄) = Ξ£π β β0 (πΉβπ)) |
33 | 11 | recnd 7988 |
. . . 4
β’ ((π β§ π β β0) β (πΉβπ) β β) |
34 | 1, 15, 17, 18, 33, 28 | isumsplit 11501 |
. . 3
β’ (π β Ξ£π β β0 (πΉβπ) = (Ξ£π β (0...((π + 1) β 1))(πΉβπ) + Ξ£π β (β€β₯β(π + 1))(πΉβπ))) |
35 | 13 | nn0cnd 9233 |
. . . . . . . 8
β’ (π β π β β) |
36 | | ax-1cn 7906 |
. . . . . . . 8
β’ 1 β
β |
37 | | pncan 8165 |
. . . . . . . 8
β’ ((π β β β§ 1 β
β) β ((π + 1)
β 1) = π) |
38 | 35, 36, 37 | sylancl 413 |
. . . . . . 7
β’ (π β ((π + 1) β 1) = π) |
39 | 38 | oveq2d 5893 |
. . . . . 6
β’ (π β (0...((π + 1) β 1)) = (0...π)) |
40 | 39 | sumeq1d 11376 |
. . . . 5
β’ (π β Ξ£π β (0...((π + 1) β 1))(πΉβπ) = Ξ£π β (0...π)(πΉβπ)) |
41 | | eqidd 2178 |
. . . . . 6
β’ ((π β§ π β (β€β₯β0))
β (πΉβπ) = (πΉβπ)) |
42 | 13, 1 | eleqtrdi 2270 |
. . . . . 6
β’ (π β π β
(β€β₯β0)) |
43 | | elnn0uz 9567 |
. . . . . . 7
β’ (π β β0
β π β
(β€β₯β0)) |
44 | 43, 33 | sylan2br 288 |
. . . . . 6
β’ ((π β§ π β (β€β₯β0))
β (πΉβπ) β
β) |
45 | 41, 42, 44 | fsum3ser 11407 |
. . . . 5
β’ (π β Ξ£π β (0...π)(πΉβπ) = (seq0( + , πΉ)βπ)) |
46 | 40, 45 | eqtrd 2210 |
. . . 4
β’ (π β Ξ£π β (0...((π + 1) β 1))(πΉβπ) = (seq0( + , πΉ)βπ)) |
47 | 46 | oveq1d 5892 |
. . 3
β’ (π β (Ξ£π β (0...((π + 1) β 1))(πΉβπ) + Ξ£π β (β€β₯β(π + 1))(πΉβπ)) = ((seq0( + , πΉ)βπ) + Ξ£π β (β€β₯β(π + 1))(πΉβπ))) |
48 | 32, 34, 47 | 3eqtrd 2214 |
. 2
β’ (π β (expβπ΄) = ((seq0( + , πΉ)βπ) + Ξ£π β (β€β₯β(π + 1))(πΉβπ))) |
49 | 30, 48 | breqtrrd 4033 |
1
β’ (π β (seq0( + , πΉ)βπ) < (expβπ΄)) |