Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > effsumlt | GIF version |
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
Ref | Expression |
---|---|
effsumlt.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
effsumlt.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
effsumlt.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
effsumlt | ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 9500 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 9203 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | effsumlt.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
4 | 3 | rpcnd 9634 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
5 | effsumlt.1 | . . . . . . . 8 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
6 | 5 | eftvalcn 11598 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
7 | 4, 6 | sylan 281 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
8 | 3 | rpred 9632 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
9 | reeftcl 11596 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) | |
10 | 8, 9 | sylan 281 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) |
11 | 7, 10 | eqeltrd 2243 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℝ) |
12 | 1, 2, 11 | serfre 10410 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐹):ℕ0⟶ℝ) |
13 | effsumlt.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
14 | 12, 13 | ffvelrnd 5621 | . . 3 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) ∈ ℝ) |
15 | eqid 2165 | . . . 4 ⊢ (ℤ≥‘(𝑁 + 1)) = (ℤ≥‘(𝑁 + 1)) | |
16 | peano2nn0 9154 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
17 | 13, 16 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ ℕ0) |
18 | eqidd 2166 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
19 | nn0z 9211 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
20 | rpexpcl 10474 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑘) ∈ ℝ+) | |
21 | 3, 19, 20 | syl2an 287 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ+) |
22 | faccl 10648 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ) | |
23 | 22 | adantl 275 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ) |
24 | 23 | nnrpd 9630 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+) |
25 | 21, 24 | rpdivcld 9650 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ+) |
26 | 7, 25 | eqeltrd 2243 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℝ+) |
27 | 5 | efcllem 11600 | . . . . 5 ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) |
28 | 4, 27 | syl 14 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) |
29 | 1, 15, 17, 18, 26, 28 | isumrpcl 11435 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘) ∈ ℝ+) |
30 | 14, 29 | ltaddrpd 9666 | . 2 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
31 | 5 | efval2 11606 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
32 | 4, 31 | syl 14 | . . 3 ⊢ (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
33 | 11 | recnd 7927 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
34 | 1, 15, 17, 18, 33, 28 | isumsplit 11432 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
35 | 13 | nn0cnd 9169 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
36 | ax-1cn 7846 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
37 | pncan 8104 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁) | |
38 | 35, 36, 37 | sylancl 410 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
39 | 38 | oveq2d 5858 | . . . . . 6 ⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
40 | 39 | sumeq1d 11307 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) = Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘)) |
41 | eqidd 2166 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘0)) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
42 | 13, 1 | eleqtrdi 2259 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
43 | elnn0uz 9503 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 ↔ 𝑘 ∈ (ℤ≥‘0)) | |
44 | 43, 33 | sylan2br 286 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘0)) → (𝐹‘𝑘) ∈ ℂ) |
45 | 41, 42, 44 | fsum3ser 11338 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘) = (seq0( + , 𝐹)‘𝑁)) |
46 | 40, 45 | eqtrd 2198 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) = (seq0( + , 𝐹)‘𝑁)) |
47 | 46 | oveq1d 5857 | . . 3 ⊢ (𝜑 → (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘)) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
48 | 32, 34, 47 | 3eqtrd 2202 | . 2 ⊢ (𝜑 → (exp‘𝐴) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
49 | 30, 48 | breqtrrd 4010 | 1 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ↦ cmpt 4043 dom cdm 4604 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 ℝcr 7752 0cc0 7753 1c1 7754 + caddc 7756 < clt 7933 − cmin 8069 / cdiv 8568 ℕcn 8857 ℕ0cn0 9114 ℤcz 9191 ℤ≥cuz 9466 ℝ+crp 9589 ...cfz 9944 seqcseq 10380 ↑cexp 10454 !cfa 10638 ⇝ cli 11219 Σcsu 11294 expce 11583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-ico 9830 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-fac 10639 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 df-ef 11589 |
This theorem is referenced by: efgt1p2 11636 efgt1p 11637 |
Copyright terms: Public domain | W3C validator |