ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  effsumlt GIF version

Theorem effsumlt 11874
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
effsumlt.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
effsumlt.2 (𝜑𝐴 ∈ ℝ+)
effsumlt.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
effsumlt (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝑁(𝑛)

Proof of Theorem effsumlt
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9653 . . . . 5 0 = (ℤ‘0)
2 0zd 9355 . . . . 5 (𝜑 → 0 ∈ ℤ)
3 effsumlt.2 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
43rpcnd 9790 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
5 effsumlt.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
65eftvalcn 11839 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
74, 6sylan 283 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
83rpred 9788 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9 reeftcl 11837 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
108, 9sylan 283 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
117, 10eqeltrd 2273 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ)
121, 2, 11serfre 10593 . . . 4 (𝜑 → seq0( + , 𝐹):ℕ0⟶ℝ)
13 effsumlt.3 . . . 4 (𝜑𝑁 ∈ ℕ0)
1412, 13ffvelcdmd 5701 . . 3 (𝜑 → (seq0( + , 𝐹)‘𝑁) ∈ ℝ)
15 eqid 2196 . . . 4 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
16 peano2nn0 9306 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1713, 16syl 14 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℕ0)
18 eqidd 2197 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
19 nn0z 9363 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
20 rpexpcl 10667 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ ℤ) → (𝐴𝑘) ∈ ℝ+)
213, 19, 20syl2an 289 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ+)
22 faccl 10844 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2322adantl 277 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
2423nnrpd 9786 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
2521, 24rpdivcld 9806 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+)
267, 25eqeltrd 2273 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
275efcllem 11841 . . . . 5 (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
284, 27syl 14 . . . 4 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
291, 15, 17, 18, 26, 28isumrpcl 11676 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘) ∈ ℝ+)
3014, 29ltaddrpd 9822 . 2 (𝜑 → (seq0( + , 𝐹)‘𝑁) < ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
315efval2 11847 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
324, 31syl 14 . . 3 (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
3311recnd 8072 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
341, 15, 17, 18, 33, 28isumsplit 11673 . . 3 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
3513nn0cnd 9321 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
36 ax-1cn 7989 . . . . . . . 8 1 ∈ ℂ
37 pncan 8249 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
3835, 36, 37sylancl 413 . . . . . . 7 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
3938oveq2d 5941 . . . . . 6 (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
4039sumeq1d 11548 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑁)(𝐹𝑘))
41 eqidd 2197 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = (𝐹𝑘))
4213, 1eleqtrdi 2289 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
43 elnn0uz 9656 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
4443, 33sylan2br 288 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) ∈ ℂ)
4541, 42, 44fsum3ser 11579 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) = (seq0( + , 𝐹)‘𝑁))
4640, 45eqtrd 2229 . . . 4 (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) = (seq0( + , 𝐹)‘𝑁))
4746oveq1d 5940 . . 3 (𝜑 → (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
4832, 34, 473eqtrd 2233 . 2 (𝜑 → (exp‘𝐴) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
4930, 48breqtrrd 4062 1 (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4034  cmpt 4095  dom cdm 4664  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   < clt 8078  cmin 8214   / cdiv 8716  cn 9007  0cn0 9266  cz 9343  cuz 9618  +crp 9745  ...cfz 10100  seqcseq 10556  cexp 10647  !cfa 10834  cli 11460  Σcsu 11535  expce 11824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ico 9986  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ef 11830
This theorem is referenced by:  efgt1p2  11877  efgt1p  11878
  Copyright terms: Public domain W3C validator