Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > effsumlt | GIF version |
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
Ref | Expression |
---|---|
effsumlt.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
effsumlt.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
effsumlt.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
effsumlt | ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 9452 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 9158 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | effsumlt.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
4 | 3 | rpcnd 9583 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
5 | effsumlt.1 | . . . . . . . 8 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
6 | 5 | eftvalcn 11531 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
7 | 4, 6 | sylan 281 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
8 | 3 | rpred 9581 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
9 | reeftcl 11529 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) | |
10 | 8, 9 | sylan 281 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) |
11 | 7, 10 | eqeltrd 2231 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℝ) |
12 | 1, 2, 11 | serfre 10352 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐹):ℕ0⟶ℝ) |
13 | effsumlt.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
14 | 12, 13 | ffvelrnd 5596 | . . 3 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) ∈ ℝ) |
15 | eqid 2154 | . . . 4 ⊢ (ℤ≥‘(𝑁 + 1)) = (ℤ≥‘(𝑁 + 1)) | |
16 | peano2nn0 9109 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
17 | 13, 16 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ ℕ0) |
18 | eqidd 2155 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
19 | nn0z 9166 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
20 | rpexpcl 10416 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑘) ∈ ℝ+) | |
21 | 3, 19, 20 | syl2an 287 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ+) |
22 | faccl 10586 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ) | |
23 | 22 | adantl 275 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ) |
24 | 23 | nnrpd 9579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+) |
25 | 21, 24 | rpdivcld 9599 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ+) |
26 | 7, 25 | eqeltrd 2231 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℝ+) |
27 | 5 | efcllem 11533 | . . . . 5 ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) |
28 | 4, 27 | syl 14 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) |
29 | 1, 15, 17, 18, 26, 28 | isumrpcl 11368 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘) ∈ ℝ+) |
30 | 14, 29 | ltaddrpd 9615 | . 2 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
31 | 5 | efval2 11539 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
32 | 4, 31 | syl 14 | . . 3 ⊢ (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
33 | 11 | recnd 7885 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
34 | 1, 15, 17, 18, 33, 28 | isumsplit 11365 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
35 | 13 | nn0cnd 9124 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
36 | ax-1cn 7804 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
37 | pncan 8060 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁) | |
38 | 35, 36, 37 | sylancl 410 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
39 | 38 | oveq2d 5830 | . . . . . 6 ⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
40 | 39 | sumeq1d 11240 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) = Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘)) |
41 | eqidd 2155 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘0)) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
42 | 13, 1 | eleqtrdi 2247 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
43 | elnn0uz 9455 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 ↔ 𝑘 ∈ (ℤ≥‘0)) | |
44 | 43, 33 | sylan2br 286 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘0)) → (𝐹‘𝑘) ∈ ℂ) |
45 | 41, 42, 44 | fsum3ser 11271 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘) = (seq0( + , 𝐹)‘𝑁)) |
46 | 40, 45 | eqtrd 2187 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) = (seq0( + , 𝐹)‘𝑁)) |
47 | 46 | oveq1d 5829 | . . 3 ⊢ (𝜑 → (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘)) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
48 | 32, 34, 47 | 3eqtrd 2191 | . 2 ⊢ (𝜑 → (exp‘𝐴) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
49 | 30, 48 | breqtrrd 3988 | 1 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1332 ∈ wcel 2125 class class class wbr 3961 ↦ cmpt 4021 dom cdm 4579 ‘cfv 5163 (class class class)co 5814 ℂcc 7709 ℝcr 7710 0cc0 7711 1c1 7712 + caddc 7714 < clt 7891 − cmin 8025 / cdiv 8524 ℕcn 8812 ℕ0cn0 9069 ℤcz 9146 ℤ≥cuz 9418 ℝ+crp 9538 ...cfz 9890 seqcseq 10322 ↑cexp 10396 !cfa 10576 ⇝ cli 11152 Σcsu 11227 expce 11516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 ax-arch 7830 ax-caucvg 7831 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-isom 5172 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-frec 6328 df-1o 6353 df-oadd 6357 df-er 6469 df-en 6675 df-dom 6676 df-fin 6677 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-n0 9070 df-z 9147 df-uz 9419 df-q 9507 df-rp 9539 df-ico 9776 df-fz 9891 df-fzo 10020 df-seqfrec 10323 df-exp 10397 df-fac 10577 df-ihash 10627 df-cj 10719 df-re 10720 df-im 10721 df-rsqrt 10875 df-abs 10876 df-clim 11153 df-sumdc 11228 df-ef 11522 |
This theorem is referenced by: efgt1p2 11569 efgt1p 11570 |
Copyright terms: Public domain | W3C validator |