Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > effsumlt | GIF version |
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
Ref | Expression |
---|---|
effsumlt.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
effsumlt.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
effsumlt.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
effsumlt | ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 9521 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 9224 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | effsumlt.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
4 | 3 | rpcnd 9655 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
5 | effsumlt.1 | . . . . . . . 8 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
6 | 5 | eftvalcn 11620 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
7 | 4, 6 | sylan 281 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
8 | 3 | rpred 9653 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
9 | reeftcl 11618 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) | |
10 | 8, 9 | sylan 281 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) |
11 | 7, 10 | eqeltrd 2247 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℝ) |
12 | 1, 2, 11 | serfre 10431 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐹):ℕ0⟶ℝ) |
13 | effsumlt.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
14 | 12, 13 | ffvelrnd 5632 | . . 3 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) ∈ ℝ) |
15 | eqid 2170 | . . . 4 ⊢ (ℤ≥‘(𝑁 + 1)) = (ℤ≥‘(𝑁 + 1)) | |
16 | peano2nn0 9175 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
17 | 13, 16 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ ℕ0) |
18 | eqidd 2171 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
19 | nn0z 9232 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
20 | rpexpcl 10495 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑘) ∈ ℝ+) | |
21 | 3, 19, 20 | syl2an 287 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ+) |
22 | faccl 10669 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ) | |
23 | 22 | adantl 275 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ) |
24 | 23 | nnrpd 9651 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+) |
25 | 21, 24 | rpdivcld 9671 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ+) |
26 | 7, 25 | eqeltrd 2247 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℝ+) |
27 | 5 | efcllem 11622 | . . . . 5 ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) |
28 | 4, 27 | syl 14 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) |
29 | 1, 15, 17, 18, 26, 28 | isumrpcl 11457 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘) ∈ ℝ+) |
30 | 14, 29 | ltaddrpd 9687 | . 2 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
31 | 5 | efval2 11628 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
32 | 4, 31 | syl 14 | . . 3 ⊢ (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
33 | 11 | recnd 7948 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
34 | 1, 15, 17, 18, 33, 28 | isumsplit 11454 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
35 | 13 | nn0cnd 9190 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
36 | ax-1cn 7867 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
37 | pncan 8125 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁) | |
38 | 35, 36, 37 | sylancl 411 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
39 | 38 | oveq2d 5869 | . . . . . 6 ⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
40 | 39 | sumeq1d 11329 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) = Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘)) |
41 | eqidd 2171 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘0)) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
42 | 13, 1 | eleqtrdi 2263 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
43 | elnn0uz 9524 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 ↔ 𝑘 ∈ (ℤ≥‘0)) | |
44 | 43, 33 | sylan2br 286 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘0)) → (𝐹‘𝑘) ∈ ℂ) |
45 | 41, 42, 44 | fsum3ser 11360 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘) = (seq0( + , 𝐹)‘𝑁)) |
46 | 40, 45 | eqtrd 2203 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) = (seq0( + , 𝐹)‘𝑁)) |
47 | 46 | oveq1d 5868 | . . 3 ⊢ (𝜑 → (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘)) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
48 | 32, 34, 47 | 3eqtrd 2207 | . 2 ⊢ (𝜑 → (exp‘𝐴) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) |
49 | 30, 48 | breqtrrd 4017 | 1 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ↦ cmpt 4050 dom cdm 4611 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 ℝcr 7773 0cc0 7774 1c1 7775 + caddc 7777 < clt 7954 − cmin 8090 / cdiv 8589 ℕcn 8878 ℕ0cn0 9135 ℤcz 9212 ℤ≥cuz 9487 ℝ+crp 9610 ...cfz 9965 seqcseq 10401 ↑cexp 10475 !cfa 10659 ⇝ cli 11241 Σcsu 11316 expce 11605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-ico 9851 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 df-ef 11611 |
This theorem is referenced by: efgt1p2 11658 efgt1p 11659 |
Copyright terms: Public domain | W3C validator |