ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemdec GIF version

Theorem resqrexlemdec 11488
Description: Lemma for resqrex 11503. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemdec ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemdec
StepHypRef Expression
1 resqrexlemex.seq . . 3 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . 3 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . 3 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemfp1 11486 . 2 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
52adantr 276 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
61, 2, 3resqrexlemf 11484 . . . . . . 7 (𝜑𝐹:ℕ⟶ℝ+)
76ffvelcdmda 5743 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
85, 7rerpdivcld 9892 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℝ)
97rpred 9860 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
101, 2, 3resqrexlemover 11487 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 𝐴 < ((𝐹𝑁)↑2))
117rpcnd 9862 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℂ)
1211sqvald 10859 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) = ((𝐹𝑁) · (𝐹𝑁)))
1310, 12breqtrd 4088 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 𝐴 < ((𝐹𝑁) · (𝐹𝑁)))
145, 9, 7ltdivmuld 9912 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐴 / (𝐹𝑁)) < (𝐹𝑁) ↔ 𝐴 < ((𝐹𝑁) · (𝐹𝑁))))
1513, 14mpbird 167 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) < (𝐹𝑁))
168, 9, 9, 15ltadd2dd 8537 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) < ((𝐹𝑁) + (𝐹𝑁)))
17112timesd 9322 . . . 4 ((𝜑𝑁 ∈ ℕ) → (2 · (𝐹𝑁)) = ((𝐹𝑁) + (𝐹𝑁)))
1816, 17breqtrrd 4090 . . 3 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) < (2 · (𝐹𝑁)))
199, 8readdcld 8144 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℝ)
20 2rp 9822 . . . . 5 2 ∈ ℝ+
2120a1i 9 . . . 4 ((𝜑𝑁 ∈ ℕ) → 2 ∈ ℝ+)
2219, 9, 21ltdivmuld 9912 . . 3 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2) < (𝐹𝑁) ↔ ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) < (2 · (𝐹𝑁))))
2318, 22mpbird 167 . 2 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2) < (𝐹𝑁))
244, 23eqbrtrd 4084 1 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  {csn 3646   class class class wbr 4062   × cxp 4694  cfv 5294  (class class class)co 5974  cmpo 5976  cr 7966  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  cle 8150   / cdiv 8787  cn 9078  2c2 9129  +crp 9817  seqcseq 10636  cexp 10727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-rp 9818  df-seqfrec 10637  df-exp 10728
This theorem is referenced by:  resqrexlemdecn  11489
  Copyright terms: Public domain W3C validator