![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resqrexlemdec | GIF version |
Description: Lemma for resqrex 11070. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
Ref | Expression |
---|---|
resqrexlemex.seq | ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
resqrexlemex.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrexlemex.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
resqrexlemdec | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrexlemex.seq | . . 3 ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) | |
2 | resqrexlemex.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | resqrexlemex.agt0 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
4 | 1, 2, 3 | resqrexlemfp1 11053 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) |
5 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
6 | 1, 2, 3 | resqrexlemf 11051 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
7 | 6 | ffvelcdmda 5672 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℝ+) |
8 | 5, 7 | rerpdivcld 9760 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴 / (𝐹‘𝑁)) ∈ ℝ) |
9 | 7 | rpred 9728 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℝ) |
10 | 1, 2, 3 | resqrexlemover 11054 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁)↑2)) |
11 | 7 | rpcnd 9730 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℂ) |
12 | 11 | sqvald 10685 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁)↑2) = ((𝐹‘𝑁) · (𝐹‘𝑁))) |
13 | 10, 12 | breqtrd 4044 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁) · (𝐹‘𝑁))) |
14 | 5, 9, 7 | ltdivmuld 9780 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐴 / (𝐹‘𝑁)) < (𝐹‘𝑁) ↔ 𝐴 < ((𝐹‘𝑁) · (𝐹‘𝑁)))) |
15 | 13, 14 | mpbird 167 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴 / (𝐹‘𝑁)) < (𝐹‘𝑁)) |
16 | 8, 9, 9, 15 | ltadd2dd 8410 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) < ((𝐹‘𝑁) + (𝐹‘𝑁))) |
17 | 11 | 2timesd 9192 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (2 · (𝐹‘𝑁)) = ((𝐹‘𝑁) + (𝐹‘𝑁))) |
18 | 16, 17 | breqtrrd 4046 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) < (2 · (𝐹‘𝑁))) |
19 | 9, 8 | readdcld 8018 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) ∈ ℝ) |
20 | 2rp 9690 | . . . . 5 ⊢ 2 ∈ ℝ+ | |
21 | 20 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 2 ∈ ℝ+) |
22 | 19, 9, 21 | ltdivmuld 9780 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2) < (𝐹‘𝑁) ↔ ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) < (2 · (𝐹‘𝑁)))) |
23 | 18, 22 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2) < (𝐹‘𝑁)) |
24 | 4, 23 | eqbrtrd 4040 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 {csn 3607 class class class wbr 4018 × cxp 4642 ‘cfv 5235 (class class class)co 5897 ∈ cmpo 5899 ℝcr 7841 0cc0 7842 1c1 7843 + caddc 7845 · cmul 7847 < clt 8023 ≤ cle 8024 / cdiv 8660 ℕcn 8950 2c2 9001 ℝ+crp 9685 seqcseq 10478 ↑cexp 10553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-frec 6417 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-n0 9208 df-z 9285 df-uz 9560 df-rp 9686 df-seqfrec 10479 df-exp 10554 |
This theorem is referenced by: resqrexlemdecn 11056 |
Copyright terms: Public domain | W3C validator |