Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resqrexlemdec | GIF version |
Description: Lemma for resqrex 10990. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
Ref | Expression |
---|---|
resqrexlemex.seq | ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
resqrexlemex.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrexlemex.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
resqrexlemdec | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrexlemex.seq | . . 3 ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) | |
2 | resqrexlemex.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | resqrexlemex.agt0 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
4 | 1, 2, 3 | resqrexlemfp1 10973 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) |
5 | 2 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
6 | 1, 2, 3 | resqrexlemf 10971 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
7 | 6 | ffvelrnda 5631 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℝ+) |
8 | 5, 7 | rerpdivcld 9685 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴 / (𝐹‘𝑁)) ∈ ℝ) |
9 | 7 | rpred 9653 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℝ) |
10 | 1, 2, 3 | resqrexlemover 10974 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁)↑2)) |
11 | 7 | rpcnd 9655 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℂ) |
12 | 11 | sqvald 10606 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁)↑2) = ((𝐹‘𝑁) · (𝐹‘𝑁))) |
13 | 10, 12 | breqtrd 4015 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁) · (𝐹‘𝑁))) |
14 | 5, 9, 7 | ltdivmuld 9705 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐴 / (𝐹‘𝑁)) < (𝐹‘𝑁) ↔ 𝐴 < ((𝐹‘𝑁) · (𝐹‘𝑁)))) |
15 | 13, 14 | mpbird 166 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴 / (𝐹‘𝑁)) < (𝐹‘𝑁)) |
16 | 8, 9, 9, 15 | ltadd2dd 8341 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) < ((𝐹‘𝑁) + (𝐹‘𝑁))) |
17 | 11 | 2timesd 9120 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (2 · (𝐹‘𝑁)) = ((𝐹‘𝑁) + (𝐹‘𝑁))) |
18 | 16, 17 | breqtrrd 4017 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) < (2 · (𝐹‘𝑁))) |
19 | 9, 8 | readdcld 7949 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) ∈ ℝ) |
20 | 2rp 9615 | . . . . 5 ⊢ 2 ∈ ℝ+ | |
21 | 20 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 2 ∈ ℝ+) |
22 | 19, 9, 21 | ltdivmuld 9705 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2) < (𝐹‘𝑁) ↔ ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) < (2 · (𝐹‘𝑁)))) |
23 | 18, 22 | mpbird 166 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2) < (𝐹‘𝑁)) |
24 | 4, 23 | eqbrtrd 4011 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {csn 3583 class class class wbr 3989 × cxp 4609 ‘cfv 5198 (class class class)co 5853 ∈ cmpo 5855 ℝcr 7773 0cc0 7774 1c1 7775 + caddc 7777 · cmul 7779 < clt 7954 ≤ cle 7955 / cdiv 8589 ℕcn 8878 2c2 8929 ℝ+crp 9610 seqcseq 10401 ↑cexp 10475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-seqfrec 10402 df-exp 10476 |
This theorem is referenced by: resqrexlemdecn 10976 |
Copyright terms: Public domain | W3C validator |