![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resqrexlemdec | GIF version |
Description: Lemma for resqrex 11037. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
Ref | Expression |
---|---|
resqrexlemex.seq | β’ πΉ = seq1((π¦ β β+, π§ β β+ β¦ ((π¦ + (π΄ / π¦)) / 2)), (β Γ {(1 + π΄)})) |
resqrexlemex.a | β’ (π β π΄ β β) |
resqrexlemex.agt0 | β’ (π β 0 β€ π΄) |
Ref | Expression |
---|---|
resqrexlemdec | β’ ((π β§ π β β) β (πΉβ(π + 1)) < (πΉβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrexlemex.seq | . . 3 β’ πΉ = seq1((π¦ β β+, π§ β β+ β¦ ((π¦ + (π΄ / π¦)) / 2)), (β Γ {(1 + π΄)})) | |
2 | resqrexlemex.a | . . 3 β’ (π β π΄ β β) | |
3 | resqrexlemex.agt0 | . . 3 β’ (π β 0 β€ π΄) | |
4 | 1, 2, 3 | resqrexlemfp1 11020 | . 2 β’ ((π β§ π β β) β (πΉβ(π + 1)) = (((πΉβπ) + (π΄ / (πΉβπ))) / 2)) |
5 | 2 | adantr 276 | . . . . . 6 β’ ((π β§ π β β) β π΄ β β) |
6 | 1, 2, 3 | resqrexlemf 11018 | . . . . . . 7 β’ (π β πΉ:ββΆβ+) |
7 | 6 | ffvelcdmda 5653 | . . . . . 6 β’ ((π β§ π β β) β (πΉβπ) β β+) |
8 | 5, 7 | rerpdivcld 9730 | . . . . 5 β’ ((π β§ π β β) β (π΄ / (πΉβπ)) β β) |
9 | 7 | rpred 9698 | . . . . 5 β’ ((π β§ π β β) β (πΉβπ) β β) |
10 | 1, 2, 3 | resqrexlemover 11021 | . . . . . . 7 β’ ((π β§ π β β) β π΄ < ((πΉβπ)β2)) |
11 | 7 | rpcnd 9700 | . . . . . . . 8 β’ ((π β§ π β β) β (πΉβπ) β β) |
12 | 11 | sqvald 10653 | . . . . . . 7 β’ ((π β§ π β β) β ((πΉβπ)β2) = ((πΉβπ) Β· (πΉβπ))) |
13 | 10, 12 | breqtrd 4031 | . . . . . 6 β’ ((π β§ π β β) β π΄ < ((πΉβπ) Β· (πΉβπ))) |
14 | 5, 9, 7 | ltdivmuld 9750 | . . . . . 6 β’ ((π β§ π β β) β ((π΄ / (πΉβπ)) < (πΉβπ) β π΄ < ((πΉβπ) Β· (πΉβπ)))) |
15 | 13, 14 | mpbird 167 | . . . . 5 β’ ((π β§ π β β) β (π΄ / (πΉβπ)) < (πΉβπ)) |
16 | 8, 9, 9, 15 | ltadd2dd 8381 | . . . 4 β’ ((π β§ π β β) β ((πΉβπ) + (π΄ / (πΉβπ))) < ((πΉβπ) + (πΉβπ))) |
17 | 11 | 2timesd 9163 | . . . 4 β’ ((π β§ π β β) β (2 Β· (πΉβπ)) = ((πΉβπ) + (πΉβπ))) |
18 | 16, 17 | breqtrrd 4033 | . . 3 β’ ((π β§ π β β) β ((πΉβπ) + (π΄ / (πΉβπ))) < (2 Β· (πΉβπ))) |
19 | 9, 8 | readdcld 7989 | . . . 4 β’ ((π β§ π β β) β ((πΉβπ) + (π΄ / (πΉβπ))) β β) |
20 | 2rp 9660 | . . . . 5 β’ 2 β β+ | |
21 | 20 | a1i 9 | . . . 4 β’ ((π β§ π β β) β 2 β β+) |
22 | 19, 9, 21 | ltdivmuld 9750 | . . 3 β’ ((π β§ π β β) β ((((πΉβπ) + (π΄ / (πΉβπ))) / 2) < (πΉβπ) β ((πΉβπ) + (π΄ / (πΉβπ))) < (2 Β· (πΉβπ)))) |
23 | 18, 22 | mpbird 167 | . 2 β’ ((π β§ π β β) β (((πΉβπ) + (π΄ / (πΉβπ))) / 2) < (πΉβπ)) |
24 | 4, 23 | eqbrtrd 4027 | 1 β’ ((π β§ π β β) β (πΉβ(π + 1)) < (πΉβπ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 {csn 3594 class class class wbr 4005 Γ cxp 4626 βcfv 5218 (class class class)co 5877 β cmpo 5879 βcr 7812 0cc0 7813 1c1 7814 + caddc 7816 Β· cmul 7818 < clt 7994 β€ cle 7995 / cdiv 8631 βcn 8921 2c2 8972 β+crp 9655 seqcseq 10447 βcexp 10521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-rp 9656 df-seqfrec 10448 df-exp 10522 |
This theorem is referenced by: resqrexlemdecn 11023 |
Copyright terms: Public domain | W3C validator |