![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resqrexlemdec | GIF version |
Description: Lemma for resqrex 10459. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
Ref | Expression |
---|---|
resqrexlemex.seq | ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
resqrexlemex.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrexlemex.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
resqrexlemdec | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrexlemex.seq | . . 3 ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) | |
2 | resqrexlemex.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | resqrexlemex.agt0 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
4 | 1, 2, 3 | resqrexlemfp1 10442 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) |
5 | 2 | adantr 270 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
6 | 1, 2, 3 | resqrexlemf 10440 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
7 | 6 | ffvelrnda 5434 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℝ+) |
8 | 5, 7 | rerpdivcld 9205 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴 / (𝐹‘𝑁)) ∈ ℝ) |
9 | 7 | rpred 9173 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℝ) |
10 | 1, 2, 3 | resqrexlemover 10443 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁)↑2)) |
11 | 7 | rpcnd 9175 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℂ) |
12 | 11 | sqvald 10083 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁)↑2) = ((𝐹‘𝑁) · (𝐹‘𝑁))) |
13 | 10, 12 | breqtrd 3869 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁) · (𝐹‘𝑁))) |
14 | 5, 9, 7 | ltdivmuld 9225 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐴 / (𝐹‘𝑁)) < (𝐹‘𝑁) ↔ 𝐴 < ((𝐹‘𝑁) · (𝐹‘𝑁)))) |
15 | 13, 14 | mpbird 165 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴 / (𝐹‘𝑁)) < (𝐹‘𝑁)) |
16 | 8, 9, 9, 15 | ltadd2dd 7900 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) < ((𝐹‘𝑁) + (𝐹‘𝑁))) |
17 | 11 | 2timesd 8658 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (2 · (𝐹‘𝑁)) = ((𝐹‘𝑁) + (𝐹‘𝑁))) |
18 | 16, 17 | breqtrrd 3871 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) < (2 · (𝐹‘𝑁))) |
19 | 9, 8 | readdcld 7517 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) ∈ ℝ) |
20 | 2rp 9139 | . . . . 5 ⊢ 2 ∈ ℝ+ | |
21 | 20 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 2 ∈ ℝ+) |
22 | 19, 9, 21 | ltdivmuld 9225 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2) < (𝐹‘𝑁) ↔ ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) < (2 · (𝐹‘𝑁)))) |
23 | 18, 22 | mpbird 165 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2) < (𝐹‘𝑁)) |
24 | 4, 23 | eqbrtrd 3865 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∈ wcel 1438 {csn 3446 class class class wbr 3845 × cxp 4436 ‘cfv 5015 (class class class)co 5652 ↦ cmpt2 5654 ℝcr 7349 0cc0 7350 1c1 7351 + caddc 7353 · cmul 7355 < clt 7522 ≤ cle 7523 / cdiv 8139 ℕcn 8422 2c2 8473 ℝ+crp 9134 seqcseq 9852 ↑cexp 9954 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 ax-cnex 7436 ax-resscn 7437 ax-1cn 7438 ax-1re 7439 ax-icn 7440 ax-addcl 7441 ax-addrcl 7442 ax-mulcl 7443 ax-mulrcl 7444 ax-addcom 7445 ax-mulcom 7446 ax-addass 7447 ax-mulass 7448 ax-distr 7449 ax-i2m1 7450 ax-0lt1 7451 ax-1rid 7452 ax-0id 7453 ax-rnegex 7454 ax-precex 7455 ax-cnre 7456 ax-pre-ltirr 7457 ax-pre-ltwlin 7458 ax-pre-lttrn 7459 ax-pre-apti 7460 ax-pre-ltadd 7461 ax-pre-mulgt0 7462 ax-pre-mulext 7463 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rmo 2367 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-if 3394 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-id 4120 df-po 4123 df-iso 4124 df-iord 4193 df-on 4195 df-ilim 4196 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-recs 6070 df-frec 6156 df-pnf 7524 df-mnf 7525 df-xr 7526 df-ltxr 7527 df-le 7528 df-sub 7655 df-neg 7656 df-reap 8052 df-ap 8059 df-div 8140 df-inn 8423 df-2 8481 df-3 8482 df-4 8483 df-n0 8674 df-z 8751 df-uz 9020 df-rp 9135 df-iseq 9853 df-seq3 9854 df-exp 9955 |
This theorem is referenced by: resqrexlemdecn 10445 |
Copyright terms: Public domain | W3C validator |