| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemdec | GIF version | ||
| Description: Lemma for resqrex 11381. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq | ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
| resqrexlemex.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| resqrexlemex.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| resqrexlemdec | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrexlemex.seq | . . 3 ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) | |
| 2 | resqrexlemex.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | resqrexlemex.agt0 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 4 | 1, 2, 3 | resqrexlemfp1 11364 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) |
| 5 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 6 | 1, 2, 3 | resqrexlemf 11362 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
| 7 | 6 | ffvelcdmda 5722 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℝ+) |
| 8 | 5, 7 | rerpdivcld 9857 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴 / (𝐹‘𝑁)) ∈ ℝ) |
| 9 | 7 | rpred 9825 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℝ) |
| 10 | 1, 2, 3 | resqrexlemover 11365 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁)↑2)) |
| 11 | 7 | rpcnd 9827 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘𝑁) ∈ ℂ) |
| 12 | 11 | sqvald 10822 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁)↑2) = ((𝐹‘𝑁) · (𝐹‘𝑁))) |
| 13 | 10, 12 | breqtrd 4073 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁) · (𝐹‘𝑁))) |
| 14 | 5, 9, 7 | ltdivmuld 9877 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐴 / (𝐹‘𝑁)) < (𝐹‘𝑁) ↔ 𝐴 < ((𝐹‘𝑁) · (𝐹‘𝑁)))) |
| 15 | 13, 14 | mpbird 167 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴 / (𝐹‘𝑁)) < (𝐹‘𝑁)) |
| 16 | 8, 9, 9, 15 | ltadd2dd 8502 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) < ((𝐹‘𝑁) + (𝐹‘𝑁))) |
| 17 | 11 | 2timesd 9287 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (2 · (𝐹‘𝑁)) = ((𝐹‘𝑁) + (𝐹‘𝑁))) |
| 18 | 16, 17 | breqtrrd 4075 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) < (2 · (𝐹‘𝑁))) |
| 19 | 9, 8 | readdcld 8109 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) ∈ ℝ) |
| 20 | 2rp 9787 | . . . . 5 ⊢ 2 ∈ ℝ+ | |
| 21 | 20 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 2 ∈ ℝ+) |
| 22 | 19, 9, 21 | ltdivmuld 9877 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2) < (𝐹‘𝑁) ↔ ((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) < (2 · (𝐹‘𝑁)))) |
| 23 | 18, 22 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2) < (𝐹‘𝑁)) |
| 24 | 4, 23 | eqbrtrd 4069 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {csn 3634 class class class wbr 4047 × cxp 4677 ‘cfv 5276 (class class class)co 5951 ∈ cmpo 5953 ℝcr 7931 0cc0 7932 1c1 7933 + caddc 7935 · cmul 7937 < clt 8114 ≤ cle 8115 / cdiv 8752 ℕcn 9043 2c2 9094 ℝ+crp 9782 seqcseq 10599 ↑cexp 10690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-rp 9783 df-seqfrec 10600 df-exp 10691 |
| This theorem is referenced by: resqrexlemdecn 11367 |
| Copyright terms: Public domain | W3C validator |