| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > absgtap | GIF version | ||
| Description: Greater-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.) |
| Ref | Expression |
|---|---|
| absgtap.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| absgtap.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| absgtap.lt | ⊢ (𝜑 → 𝐵 < (abs‘𝐴)) |
| Ref | Expression |
|---|---|
| absgtap | ⊢ (𝜑 → 𝐴 # 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absgtap.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 2 | 1 | rpred 9900 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 3 | 1 | rpge0d 9904 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝐵) |
| 4 | 2, 3 | absidd 11686 | . . . 4 ⊢ (𝜑 → (abs‘𝐵) = 𝐵) |
| 5 | absgtap.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 6 | 5 | abscld 11700 | . . . . 5 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
| 7 | absgtap.lt | . . . . 5 ⊢ (𝜑 → 𝐵 < (abs‘𝐴)) | |
| 8 | 2, 6, 7 | ltapd 8793 | . . . 4 ⊢ (𝜑 → 𝐵 # (abs‘𝐴)) |
| 9 | 4, 8 | eqbrtrd 4105 | . . 3 ⊢ (𝜑 → (abs‘𝐵) # (abs‘𝐴)) |
| 10 | 1 | rpcnd 9902 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 11 | absext 11582 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐵) # (abs‘𝐴) → 𝐵 # 𝐴)) | |
| 12 | 10, 5, 11 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((abs‘𝐵) # (abs‘𝐴) → 𝐵 # 𝐴)) |
| 13 | 9, 12 | mpd 13 | . 2 ⊢ (𝜑 → 𝐵 # 𝐴) |
| 14 | apsym 8761 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 # 𝐴 ↔ 𝐴 # 𝐵)) | |
| 15 | 10, 5, 14 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐵 # 𝐴 ↔ 𝐴 # 𝐵)) |
| 16 | 13, 15 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 # 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2200 class class class wbr 4083 ‘cfv 5318 ℂcc 8005 < clt 8189 # cap 8736 ℝ+crp 9857 abscabs 11516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-rp 9858 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 |
| This theorem is referenced by: georeclim 12032 |
| Copyright terms: Public domain | W3C validator |