![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mhm0 | GIF version |
Description: A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
mhm0.z | ⊢ 0 = (0g‘𝑆) |
mhm0.y | ⊢ 𝑌 = (0g‘𝑇) |
Ref | Expression |
---|---|
mhm0 | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘ 0 ) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2193 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | eqid 2193 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2193 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | mhm0.z | . . . 4 ⊢ 0 = (0g‘𝑆) | |
6 | mhm0.y | . . . 4 ⊢ 𝑌 = (0g‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | ismhm 13036 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌))) |
8 | 7 | simprbi 275 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘ 0 ) = 𝑌)) |
9 | 8 | simp3d 1013 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹‘ 0 ) = 𝑌) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 0gc0g 12870 Mndcmnd 13000 MndHom cmhm 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-map 6706 df-inn 8985 df-ndx 12624 df-slot 12625 df-base 12627 df-mhm 13034 |
This theorem is referenced by: mhmf1o 13045 resmhm 13062 resmhm2 13063 resmhm2b 13064 mhmco 13065 mhmima 13066 mhmeql 13067 gsumwmhm 13073 mhmmulg 13236 gsumfzmhm 13416 rhm1 13666 |
Copyright terms: Public domain | W3C validator |