![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subrgss | GIF version |
Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgss.1 | β’ π΅ = (Baseβπ ) |
Ref | Expression |
---|---|
subrgss | β’ (π΄ β (SubRingβπ ) β π΄ β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 | . . . 4 β’ π΅ = (Baseβπ ) | |
2 | eqid 2177 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
3 | 1, 2 | issubrg 13348 | . . 3 β’ (π΄ β (SubRingβπ ) β ((π β Ring β§ (π βΎs π΄) β Ring) β§ (π΄ β π΅ β§ (1rβπ ) β π΄))) |
4 | 3 | simprbi 275 | . 2 β’ (π΄ β (SubRingβπ ) β (π΄ β π΅ β§ (1rβπ ) β π΄)) |
5 | 4 | simpld 112 | 1 β’ (π΄ β (SubRingβπ ) β π΄ β π΅) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 β wss 3131 βcfv 5218 (class class class)co 5878 Basecbs 12465 βΎs cress 12466 1rcur 13148 Ringcrg 13185 SubRingcsubrg 13344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ov 5881 df-inn 8923 df-ndx 12468 df-slot 12469 df-base 12471 df-subrg 13346 |
This theorem is referenced by: subrgsubg 13354 subrg1 13358 subrgsubm 13361 subrgdvds 13362 subrguss 13363 subrginv 13364 subrgdv 13365 subsubrg 13372 sralmod 13542 |
Copyright terms: Public domain | W3C validator |