ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgss GIF version

Theorem subrgss 13499
Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
subrgss.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
subrgss (𝐴 ∈ (SubRing‘𝑅) → 𝐴𝐵)

Proof of Theorem subrgss
StepHypRef Expression
1 subrgss.1 . . . 4 𝐵 = (Base‘𝑅)
2 eqid 2187 . . . 4 (1r𝑅) = (1r𝑅)
31, 2issubrg 13498 . . 3 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵 ∧ (1r𝑅) ∈ 𝐴)))
43simprbi 275 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴𝐵 ∧ (1r𝑅) ∈ 𝐴))
54simpld 112 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158  wss 3141  cfv 5228  (class class class)co 5888  Basecbs 12476  s cress 12477  1rcur 13268  Ringcrg 13305  SubRingcsubrg 13494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7916  ax-resscn 7917  ax-1re 7919  ax-addrcl 7922
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-ov 5891  df-inn 8934  df-ndx 12479  df-slot 12480  df-base 12482  df-subrg 13496
This theorem is referenced by:  subrgsubg  13504  subrg1  13508  subrgsubm  13511  subrgdvds  13512  subrguss  13513  subrginv  13514  subrgdv  13515  subsubrg  13522  sralmod  13696
  Copyright terms: Public domain W3C validator