ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgdv GIF version

Theorem subrgdv 14187
Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdv.1 𝑆 = (𝑅s 𝐴)
subrgdv.2 / = (/r𝑅)
subrgdv.3 𝑈 = (Unit‘𝑆)
subrgdv.4 𝐸 = (/r𝑆)
Assertion
Ref Expression
subrgdv ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌))

Proof of Theorem subrgdv
StepHypRef Expression
1 subrgdv.1 . . . . . 6 𝑆 = (𝑅s 𝐴)
2 eqid 2229 . . . . . 6 (invr𝑅) = (invr𝑅)
3 subrgdv.3 . . . . . 6 𝑈 = (Unit‘𝑆)
4 eqid 2229 . . . . . 6 (invr𝑆) = (invr𝑆)
51, 2, 3, 4subrginv 14186 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) = ((invr𝑆)‘𝑌))
653adant2 1040 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → ((invr𝑅)‘𝑌) = ((invr𝑆)‘𝑌))
76oveq2d 6010 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋(.r𝑅)((invr𝑅)‘𝑌)) = (𝑋(.r𝑅)((invr𝑆)‘𝑌)))
8 subrgrcl 14175 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
9 eqid 2229 . . . . . . 7 (.r𝑅) = (.r𝑅)
101, 9ressmulrg 13164 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
118, 10mpdan 421 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
12113ad2ant1 1042 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (.r𝑅) = (.r𝑆))
1312oveqd 6011 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋(.r𝑅)((invr𝑆)‘𝑌)) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
147, 13eqtrd 2262 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋(.r𝑅)((invr𝑅)‘𝑌)) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
15 eqidd 2230 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (Base‘𝑅) = (Base‘𝑅))
16 eqidd 2230 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (.r𝑅) = (.r𝑅))
17 eqidd 2230 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (Unit‘𝑅) = (Unit‘𝑅))
18 eqidd 2230 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (invr𝑅) = (invr𝑅))
19 subrgdv.2 . . . 4 / = (/r𝑅)
2019a1i 9 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → / = (/r𝑅))
2183ad2ant1 1042 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑅 ∈ Ring)
22 eqid 2229 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2322subrgss 14171 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
24233ad2ant1 1042 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝐴 ⊆ (Base‘𝑅))
25 simp2 1022 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑋𝐴)
2624, 25sseldd 3225 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
27 eqid 2229 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
281, 27, 3subrguss 14185 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅))
29283ad2ant1 1042 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑈 ⊆ (Unit‘𝑅))
30 simp3 1023 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑌𝑈)
3129, 30sseldd 3225 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑌 ∈ (Unit‘𝑅))
3215, 16, 17, 18, 20, 21, 26, 31dvrvald 14083 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
33 eqidd 2230 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (Base‘𝑆) = (Base‘𝑆))
34 eqidd 2230 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (.r𝑆) = (.r𝑆))
353a1i 9 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑈 = (Unit‘𝑆))
36 eqidd 2230 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (invr𝑆) = (invr𝑆))
37 subrgdv.4 . . . 4 𝐸 = (/r𝑆)
3837a1i 9 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝐸 = (/r𝑆))
391subrgring 14173 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
40393ad2ant1 1042 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑆 ∈ Ring)
411subrgbas 14179 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
42413ad2ant1 1042 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝐴 = (Base‘𝑆))
4325, 42eleqtrd 2308 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑋 ∈ (Base‘𝑆))
4433, 34, 35, 36, 38, 40, 43, 30dvrvald 14083 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋𝐸𝑌) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
4514, 32, 443eqtr4d 2272 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200  wss 3197  cfv 5314  (class class class)co 5994  Basecbs 13018  s cress 13019  .rcmulr 13097  Ringcrg 13945  Unitcui 14036  invrcinvr 14069  /rcdvr 14080  SubRingcsubrg 14166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-tpos 6381  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-mulr 13110  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-subg 13693  df-cmn 13809  df-abl 13810  df-mgp 13870  df-ur 13909  df-srg 13913  df-ring 13947  df-oppr 14017  df-dvdsr 14038  df-unit 14039  df-invr 14070  df-dvr 14081  df-subrg 14168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator