ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sratopng GIF version

Theorem sratopng 13946
Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
srapart.ex (𝜑𝑊𝑋)
Assertion
Ref Expression
sratopng (𝜑 → (TopOpen‘𝑊) = (TopOpen‘𝐴))

Proof of Theorem sratopng
StepHypRef Expression
1 srapart.a . . 3 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
2 srapart.s . . 3 (𝜑𝑆 ⊆ (Base‘𝑊))
3 srapart.ex . . 3 (𝜑𝑊𝑋)
41, 2, 3srabaseg 13938 . 2 (𝜑 → (Base‘𝑊) = (Base‘𝐴))
51, 2, 3sratsetg 13944 . 2 (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴))
61, 2, 3sraex 13945 . 2 (𝜑𝐴 ∈ V)
74, 5, 3, 6topnpropgd 12867 1 (𝜑 → (TopOpen‘𝑊) = (TopOpen‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  wss 3154  cfv 5255  Basecbs 12621  TopOpenctopn 12854  subringAlg csra 13932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-tset 12717  df-rest 12855  df-topn 12856  df-sra 13934
This theorem is referenced by:  rlmtopng  13961
  Copyright terms: Public domain W3C validator