ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgr1elem1 GIF version

Theorem upgr1elem1 15905
Description: Lemma for upgr1edc 15906. (Contributed by AV, 16-Oct-2020.) (Revised by Jim Kingdon, 6-Jan-2026.)
Hypotheses
Ref Expression
upgr1elem.s (𝜑 → {𝐵, 𝐶} ∈ 𝑆)
upgr1elem.b (𝜑𝐵𝑊)
upgr1elem.c (𝜑𝐶𝑋)
upgr1elem.dc (𝜑DECID 𝐵 = 𝐶)
Assertion
Ref Expression
upgr1elem1 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥𝑆 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem upgr1elem1
StepHypRef Expression
1 breq1 4085 . . . 4 (𝑥 = {𝐵, 𝐶} → (𝑥 ≈ 1o ↔ {𝐵, 𝐶} ≈ 1o))
2 breq1 4085 . . . 4 (𝑥 = {𝐵, 𝐶} → (𝑥 ≈ 2o ↔ {𝐵, 𝐶} ≈ 2o))
31, 2orbi12d 798 . . 3 (𝑥 = {𝐵, 𝐶} → ((𝑥 ≈ 1o𝑥 ≈ 2o) ↔ ({𝐵, 𝐶} ≈ 1o ∨ {𝐵, 𝐶} ≈ 2o)))
4 upgr1elem.s . . 3 (𝜑 → {𝐵, 𝐶} ∈ 𝑆)
5 upgr1elem.b . . . 4 (𝜑𝐵𝑊)
6 upgr1elem.c . . . 4 (𝜑𝐶𝑋)
7 upgr1elem.dc . . . 4 (𝜑DECID 𝐵 = 𝐶)
8 pr1or2 7355 . . . 4 ((𝐵𝑊𝐶𝑋DECID 𝐵 = 𝐶) → ({𝐵, 𝐶} ≈ 1o ∨ {𝐵, 𝐶} ≈ 2o))
95, 6, 7, 8syl3anc 1271 . . 3 (𝜑 → ({𝐵, 𝐶} ≈ 1o ∨ {𝐵, 𝐶} ≈ 2o))
103, 4, 9elrabd 2961 . 2 (𝜑 → {𝐵, 𝐶} ∈ {𝑥𝑆 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
1110snssd 3812 1 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥𝑆 ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  {crab 2512  wss 3197  {csn 3666  {cpr 3667   class class class wbr 4082  1oc1o 6545  2oc2o 6546  cen 6875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-1o 6552  df-2o 6553  df-er 6670  df-en 6878
This theorem is referenced by:  upgr1edc  15906
  Copyright terms: Public domain W3C validator