| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgr1elem1 | GIF version | ||
| Description: Lemma for upgr1edc 15764. (Contributed by AV, 16-Oct-2020.) (Revised by Jim Kingdon, 6-Jan-2026.) |
| Ref | Expression |
|---|---|
| upgr1elem.s | ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝑆) |
| upgr1elem.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| upgr1elem.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| upgr1elem.dc | ⊢ (𝜑 → DECID 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| upgr1elem1 | ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ 𝑆 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4051 | . . . 4 ⊢ (𝑥 = {𝐵, 𝐶} → (𝑥 ≈ 1o ↔ {𝐵, 𝐶} ≈ 1o)) | |
| 2 | breq1 4051 | . . . 4 ⊢ (𝑥 = {𝐵, 𝐶} → (𝑥 ≈ 2o ↔ {𝐵, 𝐶} ≈ 2o)) | |
| 3 | 1, 2 | orbi12d 795 | . . 3 ⊢ (𝑥 = {𝐵, 𝐶} → ((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) ↔ ({𝐵, 𝐶} ≈ 1o ∨ {𝐵, 𝐶} ≈ 2o))) |
| 4 | upgr1elem.s | . . 3 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝑆) | |
| 5 | upgr1elem.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 6 | upgr1elem.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 7 | upgr1elem.dc | . . . 4 ⊢ (𝜑 → DECID 𝐵 = 𝐶) | |
| 8 | pr1or2 7313 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ∧ DECID 𝐵 = 𝐶) → ({𝐵, 𝐶} ≈ 1o ∨ {𝐵, 𝐶} ≈ 2o)) | |
| 9 | 5, 6, 7, 8 | syl3anc 1250 | . . 3 ⊢ (𝜑 → ({𝐵, 𝐶} ≈ 1o ∨ {𝐵, 𝐶} ≈ 2o)) |
| 10 | 3, 4, 9 | elrabd 2933 | . 2 ⊢ (𝜑 → {𝐵, 𝐶} ∈ {𝑥 ∈ 𝑆 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 11 | 10 | snssd 3781 | 1 ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ 𝑆 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 {crab 2489 ⊆ wss 3168 {csn 3635 {cpr 3636 class class class wbr 4048 1oc1o 6505 2oc2o 6506 ≈ cen 6835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-1o 6512 df-2o 6513 df-er 6630 df-en 6838 |
| This theorem is referenced by: upgr1edc 15764 |
| Copyright terms: Public domain | W3C validator |