Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrmineqinf | GIF version |
Description: The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim Kingdon, 3-May-2023.) |
Ref | Expression |
---|---|
xrmineqinf | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → inf({𝐴, 𝐵}, ℝ*, < ) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrminmax 11221 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )) | |
2 | 1 | 3adant3 1012 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )) |
3 | simp3 994 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
4 | simp2 993 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℝ*) | |
5 | simp1 992 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ*) | |
6 | xleneg 9787 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ -𝑒𝐴 ≤ -𝑒𝐵)) | |
7 | 4, 5, 6 | syl2anc 409 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → (𝐵 ≤ 𝐴 ↔ -𝑒𝐴 ≤ -𝑒𝐵)) |
8 | 3, 7 | mpbid 146 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → -𝑒𝐴 ≤ -𝑒𝐵) |
9 | 5 | xnegcld 9805 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → -𝑒𝐴 ∈ ℝ*) |
10 | 4 | xnegcld 9805 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → -𝑒𝐵 ∈ ℝ*) |
11 | xrmaxleim 11200 | . . . . . 6 ⊢ ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (-𝑒𝐴 ≤ -𝑒𝐵 → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -𝑒𝐵)) | |
12 | 9, 10, 11 | syl2anc 409 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → (-𝑒𝐴 ≤ -𝑒𝐵 → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -𝑒𝐵)) |
13 | 8, 12 | mpd 13 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = -𝑒𝐵) |
14 | 13 | eqcomd 2176 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → -𝑒𝐵 = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )) |
15 | 13, 10 | eqeltrd 2247 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*) |
16 | 4, 15 | xrnegcon1d 11220 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → (-𝑒𝐵 = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ↔ -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = 𝐵)) |
17 | 14, 16 | mpbid 146 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = 𝐵) |
18 | 2, 17 | eqtrd 2203 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → inf({𝐴, 𝐵}, ℝ*, < ) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 {cpr 3582 class class class wbr 3987 supcsup 6957 infcinf 6958 ℝ*cxr 7946 < clt 7947 ≤ cle 7948 -𝑒cxne 9719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-mulrcl 7866 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-mulass 7870 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-1rid 7874 ax-0id 7875 ax-rnegex 7876 ax-precex 7877 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-apti 7882 ax-pre-ltadd 7883 ax-pre-mulgt0 7884 ax-pre-mulext 7885 ax-arch 7886 ax-caucvg 7887 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-sup 6959 df-inf 6960 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-reap 8487 df-ap 8494 df-div 8583 df-inn 8872 df-2 8930 df-3 8931 df-4 8932 df-n0 9129 df-z 9206 df-uz 9481 df-rp 9604 df-xneg 9722 df-seqfrec 10395 df-exp 10469 df-cj 10799 df-re 10800 df-im 10801 df-rsqrt 10955 df-abs 10956 |
This theorem is referenced by: xrbdtri 11232 |
Copyright terms: Public domain | W3C validator |