![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0finOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 0fi 9090 as of 13-Jan-2025. (Contributed by FL, 14-Jul-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0finOLD | ⊢ ∅ ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7918 | . 2 ⊢ ∅ ∈ ω | |
2 | ssid 4021 | . 2 ⊢ ∅ ⊆ ∅ | |
3 | ssnnfi 9217 | . 2 ⊢ ((∅ ∈ ω ∧ ∅ ⊆ ∅) → ∅ ∈ Fin) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ∅ ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3966 ∅c0 4342 ωcom 7894 Fincfn 8993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-om 7895 df-en 8994 df-fin 8997 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |