| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fi | Structured version Visualization version GIF version | ||
| Description: The empty set is finite. (Contributed by FL, 14-Jul-2008.) Avoid ax-10 2142, ax-un 7711. (Revised by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| 0fi | ⊢ ∅ ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7865 | . . 3 ⊢ ∅ ∈ ω | |
| 2 | eqid 2729 | . . . 4 ⊢ ∅ = ∅ | |
| 3 | en0 8989 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 231 | . . 3 ⊢ ∅ ≈ ∅ |
| 5 | breq2 5111 | . . . 4 ⊢ (𝑥 = ∅ → (∅ ≈ 𝑥 ↔ ∅ ≈ ∅)) | |
| 6 | 5 | rspcev 3588 | . . 3 ⊢ ((∅ ∈ ω ∧ ∅ ≈ ∅) → ∃𝑥 ∈ ω ∅ ≈ 𝑥) |
| 7 | 1, 4, 6 | mp2an 692 | . 2 ⊢ ∃𝑥 ∈ ω ∅ ≈ 𝑥 |
| 8 | isfi 8947 | . 2 ⊢ (∅ ∈ Fin ↔ ∃𝑥 ∈ ω ∅ ≈ 𝑥) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ ∅ ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∅c0 4296 class class class wbr 5107 ωcom 7842 ≈ cen 8915 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-ord 6335 df-on 6336 df-lim 6337 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-om 7843 df-en 8919 df-fin 8922 |
| This theorem is referenced by: snfi 9014 ssfi 9137 cnvfi 9140 fnfi 9142 nneneq 9170 nfielex 9218 imafiOLD 9265 xpfiOLD 9270 fodomfib 9280 iunfi 9294 fczfsuppd 9337 fsuppun 9338 0fsupp 9341 r1fin 9726 acndom 10004 numwdom 10012 ackbij1lem18 10189 sdom2en01 10255 fin23lem26 10278 isfin1-3 10339 gchxpidm 10622 fzfi 13937 fzofi 13939 hasheq0 14328 hashxp 14399 lcmf0 16604 0hashbc 16978 acsfn0 17621 isdrs2 18267 fpwipodrs 18499 symgfisg 19398 dsmm0cl 21649 mplsubg 21911 mpllss 21912 psrbag0 21969 mat0dimbas0 22353 mat0dim0 22354 mat0dimid 22355 mat0dimscm 22356 mat0dimcrng 22357 mat0scmat 22425 mavmul0 22439 mavmul0g 22440 mdet0pr 22479 m1detdiag 22484 d0mat2pmat 22625 chpmat0d 22721 fctop 22891 cmpfi 23295 bwth 23297 comppfsc 23419 ptbasid 23462 cfinfil 23780 ufinffr 23816 fin1aufil 23819 alexsubALTlem2 23935 alexsubALTlem4 23937 ptcmplem2 23940 tsmsfbas 24015 xrge0gsumle 24722 xrge0tsms 24723 fta1 26216 uhgr0edgfi 29167 fusgrfisbase 29255 vtxdg0e 29402 wwlksnfi 29836 mptiffisupp 32616 hashxpe 32732 xrge0tsmsd 33002 elrgspnlem4 33196 esumnul 34038 esum0 34039 esumcst 34053 esumsnf 34054 esumpcvgval 34068 sibf0 34325 eulerpartlemt 34362 derang0 35156 topdifinffinlem 37335 matunitlindf 37612 0totbnd 37767 heiborlem6 37810 mzpcompact2lem 42739 rp-isfinite6 43507 0pwfi 45053 fouriercn 46230 rrxtopn0 46291 salexct 46332 sge0rnn0 46366 sge00 46374 sge0sn 46377 ovn0val 46548 ovn02 46566 hoidmv0val 46581 hoidmvle 46598 hoiqssbl 46623 von0val 46669 vonhoire 46670 vonioo 46680 vonicc 46683 vonsn 46689 lcoc0 48411 lco0 48416 |
| Copyright terms: Public domain | W3C validator |