| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fi | Structured version Visualization version GIF version | ||
| Description: The empty set is finite. (Contributed by FL, 14-Jul-2008.) Avoid ax-10 2142, ax-un 7714. (Revised by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| 0fi | ⊢ ∅ ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7868 | . . 3 ⊢ ∅ ∈ ω | |
| 2 | eqid 2730 | . . . 4 ⊢ ∅ = ∅ | |
| 3 | en0 8992 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 231 | . . 3 ⊢ ∅ ≈ ∅ |
| 5 | breq2 5114 | . . . 4 ⊢ (𝑥 = ∅ → (∅ ≈ 𝑥 ↔ ∅ ≈ ∅)) | |
| 6 | 5 | rspcev 3591 | . . 3 ⊢ ((∅ ∈ ω ∧ ∅ ≈ ∅) → ∃𝑥 ∈ ω ∅ ≈ 𝑥) |
| 7 | 1, 4, 6 | mp2an 692 | . 2 ⊢ ∃𝑥 ∈ ω ∅ ≈ 𝑥 |
| 8 | isfi 8950 | . 2 ⊢ (∅ ∈ Fin ↔ ∃𝑥 ∈ ω ∅ ≈ 𝑥) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ ∅ ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∅c0 4299 class class class wbr 5110 ωcom 7845 ≈ cen 8918 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-ord 6338 df-on 6339 df-lim 6340 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-om 7846 df-en 8922 df-fin 8925 |
| This theorem is referenced by: snfi 9017 ssfi 9143 cnvfi 9146 fnfi 9148 nneneq 9176 nfielex 9225 imafiOLD 9272 xpfiOLD 9277 fodomfib 9287 iunfi 9301 fczfsuppd 9344 fsuppun 9345 0fsupp 9348 r1fin 9733 acndom 10011 numwdom 10019 ackbij1lem18 10196 sdom2en01 10262 fin23lem26 10285 isfin1-3 10346 gchxpidm 10629 fzfi 13944 fzofi 13946 hasheq0 14335 hashxp 14406 lcmf0 16611 0hashbc 16985 acsfn0 17628 isdrs2 18274 fpwipodrs 18506 symgfisg 19405 dsmm0cl 21656 mplsubg 21918 mpllss 21919 psrbag0 21976 mat0dimbas0 22360 mat0dim0 22361 mat0dimid 22362 mat0dimscm 22363 mat0dimcrng 22364 mat0scmat 22432 mavmul0 22446 mavmul0g 22447 mdet0pr 22486 m1detdiag 22491 d0mat2pmat 22632 chpmat0d 22728 fctop 22898 cmpfi 23302 bwth 23304 comppfsc 23426 ptbasid 23469 cfinfil 23787 ufinffr 23823 fin1aufil 23826 alexsubALTlem2 23942 alexsubALTlem4 23944 ptcmplem2 23947 tsmsfbas 24022 xrge0gsumle 24729 xrge0tsms 24730 fta1 26223 uhgr0edgfi 29174 fusgrfisbase 29262 vtxdg0e 29409 wwlksnfi 29843 mptiffisupp 32623 hashxpe 32739 xrge0tsmsd 33009 elrgspnlem4 33203 esumnul 34045 esum0 34046 esumcst 34060 esumsnf 34061 esumpcvgval 34075 sibf0 34332 eulerpartlemt 34369 derang0 35163 topdifinffinlem 37342 matunitlindf 37619 0totbnd 37774 heiborlem6 37817 mzpcompact2lem 42746 rp-isfinite6 43514 0pwfi 45060 fouriercn 46237 rrxtopn0 46298 salexct 46339 sge0rnn0 46373 sge00 46381 sge0sn 46384 ovn0val 46555 ovn02 46573 hoidmv0val 46588 hoidmvle 46605 hoiqssbl 46630 von0val 46676 vonhoire 46677 vonioo 46687 vonicc 46690 vonsn 46696 lcoc0 48415 lco0 48420 |
| Copyright terms: Public domain | W3C validator |