| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fi | Structured version Visualization version GIF version | ||
| Description: The empty set is finite. (Contributed by FL, 14-Jul-2008.) Avoid ax-10 2144, ax-un 7668. (Revised by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| 0fi | ⊢ ∅ ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7819 | . . 3 ⊢ ∅ ∈ ω | |
| 2 | eqid 2731 | . . . 4 ⊢ ∅ = ∅ | |
| 3 | en0 8940 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 231 | . . 3 ⊢ ∅ ≈ ∅ |
| 5 | breq2 5093 | . . . 4 ⊢ (𝑥 = ∅ → (∅ ≈ 𝑥 ↔ ∅ ≈ ∅)) | |
| 6 | 5 | rspcev 3572 | . . 3 ⊢ ((∅ ∈ ω ∧ ∅ ≈ ∅) → ∃𝑥 ∈ ω ∅ ≈ 𝑥) |
| 7 | 1, 4, 6 | mp2an 692 | . 2 ⊢ ∃𝑥 ∈ ω ∅ ≈ 𝑥 |
| 8 | isfi 8898 | . 2 ⊢ (∅ ∈ Fin ↔ ∃𝑥 ∈ ω ∅ ≈ 𝑥) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ ∅ ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∅c0 4280 class class class wbr 5089 ωcom 7796 ≈ cen 8866 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-ord 6309 df-on 6310 df-lim 6311 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-om 7797 df-en 8870 df-fin 8873 |
| This theorem is referenced by: snfi 8965 ssfi 9082 cnvfi 9085 fnfi 9087 nneneq 9115 nfielex 9158 imafiOLD 9200 fodomfib 9213 iunfi 9227 fczfsuppd 9270 fsuppun 9271 0fsupp 9274 r1fin 9666 acndom 9942 numwdom 9950 ackbij1lem18 10127 sdom2en01 10193 fin23lem26 10216 isfin1-3 10277 gchxpidm 10560 fzfi 13879 fzofi 13881 hasheq0 14270 hashxp 14341 lcmf0 16545 0hashbc 16919 acsfn0 17566 isdrs2 18212 fpwipodrs 18446 symgfisg 19380 dsmm0cl 21677 mplsubg 21939 mpllss 21940 psrbag0 21997 mat0dimbas0 22381 mat0dim0 22382 mat0dimid 22383 mat0dimscm 22384 mat0dimcrng 22385 mat0scmat 22453 mavmul0 22467 mavmul0g 22468 mdet0pr 22507 m1detdiag 22512 d0mat2pmat 22653 chpmat0d 22749 fctop 22919 cmpfi 23323 bwth 23325 comppfsc 23447 ptbasid 23490 cfinfil 23808 ufinffr 23844 fin1aufil 23847 alexsubALTlem2 23963 alexsubALTlem4 23965 ptcmplem2 23968 tsmsfbas 24043 xrge0gsumle 24749 xrge0tsms 24750 fta1 26243 uhgr0edgfi 29218 fusgrfisbase 29306 vtxdg0e 29453 wwlksnfi 29884 mptiffisupp 32674 hashxpe 32789 xrge0tsmsd 33042 elrgspnlem4 33212 esumnul 34061 esum0 34062 esumcst 34076 esumsnf 34077 esumpcvgval 34091 sibf0 34347 eulerpartlemt 34384 derang0 35213 topdifinffinlem 37389 matunitlindf 37666 0totbnd 37821 heiborlem6 37864 mzpcompact2lem 42792 rp-isfinite6 43559 0pwfi 45104 fouriercn 46278 rrxtopn0 46339 salexct 46380 sge0rnn0 46414 sge00 46422 sge0sn 46425 ovn0val 46596 ovn02 46614 hoidmv0val 46629 hoidmvle 46646 hoiqssbl 46671 von0val 46717 vonhoire 46718 vonioo 46728 vonicc 46731 vonsn 46737 lcoc0 48462 lco0 48467 |
| Copyright terms: Public domain | W3C validator |