![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0fi | Structured version Visualization version GIF version |
Description: The empty set is finite. (Contributed by FL, 14-Jul-2008.) Avoid ax-10 2138, ax-un 7753. (Revised by BTernaryTau, 13-Jan-2025.) |
Ref | Expression |
---|---|
0fi | ⊢ ∅ ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7910 | . . 3 ⊢ ∅ ∈ ω | |
2 | eqid 2734 | . . . 4 ⊢ ∅ = ∅ | |
3 | en0 9056 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∅ = ∅) | |
4 | 2, 3 | mpbir 231 | . . 3 ⊢ ∅ ≈ ∅ |
5 | breq2 5151 | . . . 4 ⊢ (𝑥 = ∅ → (∅ ≈ 𝑥 ↔ ∅ ≈ ∅)) | |
6 | 5 | rspcev 3621 | . . 3 ⊢ ((∅ ∈ ω ∧ ∅ ≈ ∅) → ∃𝑥 ∈ ω ∅ ≈ 𝑥) |
7 | 1, 4, 6 | mp2an 692 | . 2 ⊢ ∃𝑥 ∈ ω ∅ ≈ 𝑥 |
8 | isfi 9014 | . 2 ⊢ (∅ ∈ Fin ↔ ∃𝑥 ∈ ω ∅ ≈ 𝑥) | |
9 | 7, 8 | mpbir 231 | 1 ⊢ ∅ ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 ∃wrex 3067 ∅c0 4338 class class class wbr 5147 ωcom 7886 ≈ cen 8980 Fincfn 8983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-mo 2537 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-ord 6388 df-on 6389 df-lim 6390 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-om 7887 df-en 8984 df-fin 8987 |
This theorem is referenced by: snfi 9081 ssfi 9211 cnvfi 9214 fnfi 9215 nneneq 9243 nfielex 9304 imafiOLD 9351 xpfiOLD 9356 fodomfib 9366 iunfi 9380 fczfsuppd 9423 fsuppun 9424 0fsupp 9427 r1fin 9810 acndom 10088 numwdom 10096 ackbij1lem18 10273 sdom2en01 10339 fin23lem26 10362 isfin1-3 10423 gchxpidm 10706 fzfi 14009 fzofi 14011 hasheq0 14398 hashxp 14469 lcmf0 16667 0hashbc 17040 acsfn0 17704 isdrs2 18363 fpwipodrs 18597 symgfisg 19500 dsmm0cl 21777 mplsubg 22039 mpllss 22040 psrbag0 22103 mat0dimbas0 22487 mat0dim0 22488 mat0dimid 22489 mat0dimscm 22490 mat0dimcrng 22491 mat0scmat 22559 mavmul0 22573 mavmul0g 22574 mdet0pr 22613 m1detdiag 22618 d0mat2pmat 22759 chpmat0d 22855 fctop 23026 cmpfi 23431 bwth 23433 comppfsc 23555 ptbasid 23598 cfinfil 23916 ufinffr 23952 fin1aufil 23955 alexsubALTlem2 24071 alexsubALTlem4 24073 ptcmplem2 24076 tsmsfbas 24151 xrge0gsumle 24868 xrge0tsms 24869 fta1 26364 uhgr0edgfi 29271 fusgrfisbase 29359 vtxdg0e 29506 wwlksnfi 29935 mptiffisupp 32707 hashxpe 32816 xrge0tsmsd 33047 elrgspnlem4 33234 esumnul 34028 esum0 34029 esumcst 34043 esumsnf 34044 esumpcvgval 34058 sibf0 34315 eulerpartlemt 34352 derang0 35153 topdifinffinlem 37329 matunitlindf 37604 0totbnd 37759 heiborlem6 37802 mzpcompact2lem 42738 rp-isfinite6 43507 0pwfi 44998 fouriercn 46187 rrxtopn0 46248 salexct 46289 sge0rnn0 46323 sge00 46331 sge0sn 46334 ovn0val 46505 ovn02 46523 hoidmv0val 46538 hoidmvle 46555 hoiqssbl 46580 von0val 46626 vonhoire 46627 vonioo 46637 vonicc 46640 vonsn 46646 lcoc0 48267 lco0 48272 |
Copyright terms: Public domain | W3C validator |