| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fi | Structured version Visualization version GIF version | ||
| Description: The empty set is finite. (Contributed by FL, 14-Jul-2008.) Avoid ax-10 2141, ax-un 7727. (Revised by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| 0fi | ⊢ ∅ ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7882 | . . 3 ⊢ ∅ ∈ ω | |
| 2 | eqid 2735 | . . . 4 ⊢ ∅ = ∅ | |
| 3 | en0 9030 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 231 | . . 3 ⊢ ∅ ≈ ∅ |
| 5 | breq2 5123 | . . . 4 ⊢ (𝑥 = ∅ → (∅ ≈ 𝑥 ↔ ∅ ≈ ∅)) | |
| 6 | 5 | rspcev 3601 | . . 3 ⊢ ((∅ ∈ ω ∧ ∅ ≈ ∅) → ∃𝑥 ∈ ω ∅ ≈ 𝑥) |
| 7 | 1, 4, 6 | mp2an 692 | . 2 ⊢ ∃𝑥 ∈ ω ∅ ≈ 𝑥 |
| 8 | isfi 8988 | . 2 ⊢ (∅ ∈ Fin ↔ ∃𝑥 ∈ ω ∅ ≈ 𝑥) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ ∅ ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∅c0 4308 class class class wbr 5119 ωcom 7859 ≈ cen 8954 Fincfn 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-ord 6355 df-on 6356 df-lim 6357 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-om 7860 df-en 8958 df-fin 8961 |
| This theorem is referenced by: snfi 9055 ssfi 9185 cnvfi 9188 fnfi 9190 nneneq 9218 nfielex 9277 imafiOLD 9324 xpfiOLD 9329 fodomfib 9339 iunfi 9353 fczfsuppd 9396 fsuppun 9397 0fsupp 9400 r1fin 9785 acndom 10063 numwdom 10071 ackbij1lem18 10248 sdom2en01 10314 fin23lem26 10337 isfin1-3 10398 gchxpidm 10681 fzfi 13988 fzofi 13990 hasheq0 14379 hashxp 14450 lcmf0 16651 0hashbc 17025 acsfn0 17670 isdrs2 18316 fpwipodrs 18548 symgfisg 19447 dsmm0cl 21698 mplsubg 21960 mpllss 21961 psrbag0 22018 mat0dimbas0 22402 mat0dim0 22403 mat0dimid 22404 mat0dimscm 22405 mat0dimcrng 22406 mat0scmat 22474 mavmul0 22488 mavmul0g 22489 mdet0pr 22528 m1detdiag 22533 d0mat2pmat 22674 chpmat0d 22770 fctop 22940 cmpfi 23344 bwth 23346 comppfsc 23468 ptbasid 23511 cfinfil 23829 ufinffr 23865 fin1aufil 23868 alexsubALTlem2 23984 alexsubALTlem4 23986 ptcmplem2 23989 tsmsfbas 24064 xrge0gsumle 24771 xrge0tsms 24772 fta1 26266 uhgr0edgfi 29165 fusgrfisbase 29253 vtxdg0e 29400 wwlksnfi 29834 mptiffisupp 32616 hashxpe 32732 xrge0tsmsd 33002 elrgspnlem4 33186 esumnul 34025 esum0 34026 esumcst 34040 esumsnf 34041 esumpcvgval 34055 sibf0 34312 eulerpartlemt 34349 derang0 35137 topdifinffinlem 37311 matunitlindf 37588 0totbnd 37743 heiborlem6 37786 mzpcompact2lem 42721 rp-isfinite6 43489 0pwfi 45031 fouriercn 46209 rrxtopn0 46270 salexct 46311 sge0rnn0 46345 sge00 46353 sge0sn 46356 ovn0val 46527 ovn02 46545 hoidmv0val 46560 hoidmvle 46577 hoiqssbl 46602 von0val 46648 vonhoire 46649 vonioo 46659 vonicc 46662 vonsn 46668 lcoc0 48346 lco0 48351 |
| Copyright terms: Public domain | W3C validator |