| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fi | Structured version Visualization version GIF version | ||
| Description: The empty set is finite. (Contributed by FL, 14-Jul-2008.) Avoid ax-10 2142, ax-un 7671. (Revised by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| 0fi | ⊢ ∅ ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7822 | . . 3 ⊢ ∅ ∈ ω | |
| 2 | eqid 2729 | . . . 4 ⊢ ∅ = ∅ | |
| 3 | en0 8943 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 231 | . . 3 ⊢ ∅ ≈ ∅ |
| 5 | breq2 5096 | . . . 4 ⊢ (𝑥 = ∅ → (∅ ≈ 𝑥 ↔ ∅ ≈ ∅)) | |
| 6 | 5 | rspcev 3577 | . . 3 ⊢ ((∅ ∈ ω ∧ ∅ ≈ ∅) → ∃𝑥 ∈ ω ∅ ≈ 𝑥) |
| 7 | 1, 4, 6 | mp2an 692 | . 2 ⊢ ∃𝑥 ∈ ω ∅ ≈ 𝑥 |
| 8 | isfi 8901 | . 2 ⊢ (∅ ∈ Fin ↔ ∃𝑥 ∈ ω ∅ ≈ 𝑥) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ ∅ ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∅c0 4284 class class class wbr 5092 ωcom 7799 ≈ cen 8869 Fincfn 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-ord 6310 df-on 6311 df-lim 6312 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-om 7800 df-en 8873 df-fin 8876 |
| This theorem is referenced by: snfi 8968 ssfi 9087 cnvfi 9090 fnfi 9092 nneneq 9120 nfielex 9163 imafiOLD 9205 fodomfib 9219 iunfi 9233 fczfsuppd 9276 fsuppun 9277 0fsupp 9280 r1fin 9669 acndom 9945 numwdom 9953 ackbij1lem18 10130 sdom2en01 10196 fin23lem26 10219 isfin1-3 10280 gchxpidm 10563 fzfi 13879 fzofi 13881 hasheq0 14270 hashxp 14341 lcmf0 16545 0hashbc 16919 acsfn0 17566 isdrs2 18212 fpwipodrs 18446 symgfisg 19347 dsmm0cl 21647 mplsubg 21909 mpllss 21910 psrbag0 21967 mat0dimbas0 22351 mat0dim0 22352 mat0dimid 22353 mat0dimscm 22354 mat0dimcrng 22355 mat0scmat 22423 mavmul0 22437 mavmul0g 22438 mdet0pr 22477 m1detdiag 22482 d0mat2pmat 22623 chpmat0d 22719 fctop 22889 cmpfi 23293 bwth 23295 comppfsc 23417 ptbasid 23460 cfinfil 23778 ufinffr 23814 fin1aufil 23817 alexsubALTlem2 23933 alexsubALTlem4 23935 ptcmplem2 23938 tsmsfbas 24013 xrge0gsumle 24720 xrge0tsms 24721 fta1 26214 uhgr0edgfi 29185 fusgrfisbase 29273 vtxdg0e 29420 wwlksnfi 29851 mptiffisupp 32635 hashxpe 32752 xrge0tsmsd 33015 elrgspnlem4 33185 esumnul 34015 esum0 34016 esumcst 34030 esumsnf 34031 esumpcvgval 34045 sibf0 34302 eulerpartlemt 34339 derang0 35142 topdifinffinlem 37321 matunitlindf 37598 0totbnd 37753 heiborlem6 37796 mzpcompact2lem 42724 rp-isfinite6 43491 0pwfi 45037 fouriercn 46213 rrxtopn0 46274 salexct 46315 sge0rnn0 46349 sge00 46357 sge0sn 46360 ovn0val 46531 ovn02 46549 hoidmv0val 46564 hoidmvle 46581 hoiqssbl 46606 von0val 46652 vonhoire 46653 vonioo 46663 vonicc 46666 vonsn 46672 lcoc0 48407 lco0 48412 |
| Copyright terms: Public domain | W3C validator |