| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fi | Structured version Visualization version GIF version | ||
| Description: The empty set is finite. (Contributed by FL, 14-Jul-2008.) Avoid ax-10 2142, ax-un 7691. (Revised by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| 0fi | ⊢ ∅ ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7845 | . . 3 ⊢ ∅ ∈ ω | |
| 2 | eqid 2729 | . . . 4 ⊢ ∅ = ∅ | |
| 3 | en0 8966 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 231 | . . 3 ⊢ ∅ ≈ ∅ |
| 5 | breq2 5106 | . . . 4 ⊢ (𝑥 = ∅ → (∅ ≈ 𝑥 ↔ ∅ ≈ ∅)) | |
| 6 | 5 | rspcev 3585 | . . 3 ⊢ ((∅ ∈ ω ∧ ∅ ≈ ∅) → ∃𝑥 ∈ ω ∅ ≈ 𝑥) |
| 7 | 1, 4, 6 | mp2an 692 | . 2 ⊢ ∃𝑥 ∈ ω ∅ ≈ 𝑥 |
| 8 | isfi 8924 | . 2 ⊢ (∅ ∈ Fin ↔ ∃𝑥 ∈ ω ∅ ≈ 𝑥) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ ∅ ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∅c0 4292 class class class wbr 5102 ωcom 7822 ≈ cen 8892 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-ord 6323 df-on 6324 df-lim 6325 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-om 7823 df-en 8896 df-fin 8899 |
| This theorem is referenced by: snfi 8991 ssfi 9114 cnvfi 9117 fnfi 9119 nneneq 9147 nfielex 9194 imafiOLD 9241 xpfiOLD 9246 fodomfib 9256 iunfi 9270 fczfsuppd 9313 fsuppun 9314 0fsupp 9317 r1fin 9702 acndom 9980 numwdom 9988 ackbij1lem18 10165 sdom2en01 10231 fin23lem26 10254 isfin1-3 10315 gchxpidm 10598 fzfi 13913 fzofi 13915 hasheq0 14304 hashxp 14375 lcmf0 16580 0hashbc 16954 acsfn0 17601 isdrs2 18247 fpwipodrs 18481 symgfisg 19382 dsmm0cl 21682 mplsubg 21944 mpllss 21945 psrbag0 22002 mat0dimbas0 22386 mat0dim0 22387 mat0dimid 22388 mat0dimscm 22389 mat0dimcrng 22390 mat0scmat 22458 mavmul0 22472 mavmul0g 22473 mdet0pr 22512 m1detdiag 22517 d0mat2pmat 22658 chpmat0d 22754 fctop 22924 cmpfi 23328 bwth 23330 comppfsc 23452 ptbasid 23495 cfinfil 23813 ufinffr 23849 fin1aufil 23852 alexsubALTlem2 23968 alexsubALTlem4 23970 ptcmplem2 23973 tsmsfbas 24048 xrge0gsumle 24755 xrge0tsms 24756 fta1 26249 uhgr0edgfi 29220 fusgrfisbase 29308 vtxdg0e 29455 wwlksnfi 29886 mptiffisupp 32666 hashxpe 32782 xrge0tsmsd 33045 elrgspnlem4 33212 esumnul 34031 esum0 34032 esumcst 34046 esumsnf 34047 esumpcvgval 34061 sibf0 34318 eulerpartlemt 34355 derang0 35149 topdifinffinlem 37328 matunitlindf 37605 0totbnd 37760 heiborlem6 37803 mzpcompact2lem 42732 rp-isfinite6 43500 0pwfi 45046 fouriercn 46223 rrxtopn0 46284 salexct 46325 sge0rnn0 46359 sge00 46367 sge0sn 46370 ovn0val 46541 ovn02 46559 hoidmv0val 46574 hoidmvle 46591 hoiqssbl 46616 von0val 46662 vonhoire 46663 vonioo 46673 vonicc 46676 vonsn 46682 lcoc0 48404 lco0 48409 |
| Copyright terms: Public domain | W3C validator |