| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fi | Structured version Visualization version GIF version | ||
| Description: The empty set is finite. (Contributed by FL, 14-Jul-2008.) Avoid ax-10 2141, ax-un 7755. (Revised by BTernaryTau, 13-Jan-2025.) |
| Ref | Expression |
|---|---|
| 0fi | ⊢ ∅ ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7910 | . . 3 ⊢ ∅ ∈ ω | |
| 2 | eqid 2737 | . . . 4 ⊢ ∅ = ∅ | |
| 3 | en0 9058 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∅ = ∅) | |
| 4 | 2, 3 | mpbir 231 | . . 3 ⊢ ∅ ≈ ∅ |
| 5 | breq2 5147 | . . . 4 ⊢ (𝑥 = ∅ → (∅ ≈ 𝑥 ↔ ∅ ≈ ∅)) | |
| 6 | 5 | rspcev 3622 | . . 3 ⊢ ((∅ ∈ ω ∧ ∅ ≈ ∅) → ∃𝑥 ∈ ω ∅ ≈ 𝑥) |
| 7 | 1, 4, 6 | mp2an 692 | . 2 ⊢ ∃𝑥 ∈ ω ∅ ≈ 𝑥 |
| 8 | isfi 9016 | . 2 ⊢ (∅ ∈ Fin ↔ ∃𝑥 ∈ ω ∅ ≈ 𝑥) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ ∅ ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ∅c0 4333 class class class wbr 5143 ωcom 7887 ≈ cen 8982 Fincfn 8985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-ord 6387 df-on 6388 df-lim 6389 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-om 7888 df-en 8986 df-fin 8989 |
| This theorem is referenced by: snfi 9083 ssfi 9213 cnvfi 9216 fnfi 9218 nneneq 9246 nfielex 9307 imafiOLD 9354 xpfiOLD 9359 fodomfib 9369 iunfi 9383 fczfsuppd 9426 fsuppun 9427 0fsupp 9430 r1fin 9813 acndom 10091 numwdom 10099 ackbij1lem18 10276 sdom2en01 10342 fin23lem26 10365 isfin1-3 10426 gchxpidm 10709 fzfi 14013 fzofi 14015 hasheq0 14402 hashxp 14473 lcmf0 16671 0hashbc 17045 acsfn0 17703 isdrs2 18352 fpwipodrs 18585 symgfisg 19486 dsmm0cl 21760 mplsubg 22022 mpllss 22023 psrbag0 22086 mat0dimbas0 22472 mat0dim0 22473 mat0dimid 22474 mat0dimscm 22475 mat0dimcrng 22476 mat0scmat 22544 mavmul0 22558 mavmul0g 22559 mdet0pr 22598 m1detdiag 22603 d0mat2pmat 22744 chpmat0d 22840 fctop 23011 cmpfi 23416 bwth 23418 comppfsc 23540 ptbasid 23583 cfinfil 23901 ufinffr 23937 fin1aufil 23940 alexsubALTlem2 24056 alexsubALTlem4 24058 ptcmplem2 24061 tsmsfbas 24136 xrge0gsumle 24855 xrge0tsms 24856 fta1 26350 uhgr0edgfi 29257 fusgrfisbase 29345 vtxdg0e 29492 wwlksnfi 29926 mptiffisupp 32702 hashxpe 32811 xrge0tsmsd 33065 elrgspnlem4 33249 esumnul 34049 esum0 34050 esumcst 34064 esumsnf 34065 esumpcvgval 34079 sibf0 34336 eulerpartlemt 34373 derang0 35174 topdifinffinlem 37348 matunitlindf 37625 0totbnd 37780 heiborlem6 37823 mzpcompact2lem 42762 rp-isfinite6 43531 0pwfi 45064 fouriercn 46247 rrxtopn0 46308 salexct 46349 sge0rnn0 46383 sge00 46391 sge0sn 46394 ovn0val 46565 ovn02 46583 hoidmv0val 46598 hoidmvle 46615 hoiqssbl 46640 von0val 46686 vonhoire 46687 vonioo 46697 vonicc 46700 vonsn 46706 lcoc0 48339 lco0 48344 |
| Copyright terms: Public domain | W3C validator |