MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnon0 Structured version   Visualization version   GIF version

Theorem lnon0 28271
Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnon0.1 𝑋 = (BaseSet‘𝑈)
lnon0.6 𝑍 = (0vec𝑈)
lnon0.0 𝑂 = (𝑈 0op 𝑊)
lnon0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnon0 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑇𝑂) → ∃𝑥𝑋 𝑥𝑍)
Distinct variable groups:   𝑥,𝐿   𝑥,𝑇   𝑥,𝑈   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝑂(𝑥)   𝑍(𝑥)

Proof of Theorem lnon0
StepHypRef Expression
1 ralnex 3200 . . . . 5 (∀𝑥𝑋 ¬ 𝑥𝑍 ↔ ¬ ∃𝑥𝑋 𝑥𝑍)
2 nne 2988 . . . . . 6 𝑥𝑍𝑥 = 𝑍)
32ralbii 3132 . . . . 5 (∀𝑥𝑋 ¬ 𝑥𝑍 ↔ ∀𝑥𝑋 𝑥 = 𝑍)
41, 3bitr3i 278 . . . 4 (¬ ∃𝑥𝑋 𝑥𝑍 ↔ ∀𝑥𝑋 𝑥 = 𝑍)
5 fveq2 6543 . . . . . . . . . 10 (𝑥 = 𝑍 → (𝑇𝑥) = (𝑇𝑍))
6 lnon0.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
7 eqid 2795 . . . . . . . . . . 11 (BaseSet‘𝑊) = (BaseSet‘𝑊)
8 lnon0.6 . . . . . . . . . . 11 𝑍 = (0vec𝑈)
9 eqid 2795 . . . . . . . . . . 11 (0vec𝑊) = (0vec𝑊)
10 lnon0.7 . . . . . . . . . . 11 𝐿 = (𝑈 LnOp 𝑊)
116, 7, 8, 9, 10lno0 28229 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍) = (0vec𝑊))
125, 11sylan9eqr 2853 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑥 = 𝑍) → (𝑇𝑥) = (0vec𝑊))
1312ex 413 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑥 = 𝑍 → (𝑇𝑥) = (0vec𝑊)))
1413ralimdv 3145 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍 → ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)))
156, 7, 10lnof 28228 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
1615ffnd 6388 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇 Fn 𝑋)
1714, 16jctild 526 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍 → (𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊))))
18 fconstfv 6846 . . . . . . 7 (𝑇:𝑋⟶{(0vec𝑊)} ↔ (𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)))
19 fvex 6556 . . . . . . . 8 (0vec𝑊) ∈ V
2019fconst2 6839 . . . . . . 7 (𝑇:𝑋⟶{(0vec𝑊)} ↔ 𝑇 = (𝑋 × {(0vec𝑊)}))
2118, 20bitr3i 278 . . . . . 6 ((𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)) ↔ 𝑇 = (𝑋 × {(0vec𝑊)}))
2217, 21syl6ib 252 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍𝑇 = (𝑋 × {(0vec𝑊)})))
23 lnon0.0 . . . . . . . 8 𝑂 = (𝑈 0op 𝑊)
246, 9, 230ofval 28260 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {(0vec𝑊)}))
25243adant3 1125 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑂 = (𝑋 × {(0vec𝑊)}))
2625eqeq2d 2805 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇 = 𝑂𝑇 = (𝑋 × {(0vec𝑊)})))
2722, 26sylibrd 260 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍𝑇 = 𝑂))
284, 27syl5bi 243 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (¬ ∃𝑥𝑋 𝑥𝑍𝑇 = 𝑂))
2928necon1ad 3001 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑂 → ∃𝑥𝑋 𝑥𝑍))
3029imp 407 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑇𝑂) → ∃𝑥𝑋 𝑥𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wral 3105  wrex 3106  {csn 4476   × cxp 5446   Fn wfn 6225  wf 6226  cfv 6230  (class class class)co 7021  NrmCVeccnv 28057  BaseSetcba 28059  0veccn0v 28061   LnOp clno 28213   0op c0o 28216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-id 5353  df-po 5367  df-so 5368  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-1st 7550  df-2nd 7551  df-er 8144  df-map 8263  df-en 8363  df-dom 8364  df-sdom 8365  df-pnf 10528  df-mnf 10529  df-ltxr 10531  df-sub 10724  df-neg 10725  df-grpo 27966  df-gid 27967  df-ginv 27968  df-ablo 28018  df-vc 28032  df-nv 28065  df-va 28068  df-ba 28069  df-sm 28070  df-0v 28071  df-nmcv 28073  df-lno 28217  df-0o 28220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator