Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lnon0 | Structured version Visualization version GIF version |
Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnon0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
lnon0.6 | ⊢ 𝑍 = (0vec‘𝑈) |
lnon0.0 | ⊢ 𝑂 = (𝑈 0op 𝑊) |
lnon0.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
lnon0 | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑇 ≠ 𝑂) → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3158 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 ¬ 𝑥 ≠ 𝑍 ↔ ¬ ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) | |
2 | nne 2944 | . . . . . 6 ⊢ (¬ 𝑥 ≠ 𝑍 ↔ 𝑥 = 𝑍) | |
3 | 2 | ralbii 3088 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 ¬ 𝑥 ≠ 𝑍 ↔ ∀𝑥 ∈ 𝑋 𝑥 = 𝑍) |
4 | 1, 3 | bitr3i 280 | . . . 4 ⊢ (¬ ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 ↔ ∀𝑥 ∈ 𝑋 𝑥 = 𝑍) |
5 | fveq2 6717 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑍 → (𝑇‘𝑥) = (𝑇‘𝑍)) | |
6 | lnon0.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (BaseSet‘𝑈) | |
7 | eqid 2737 | . . . . . . . . . . 11 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
8 | lnon0.6 | . . . . . . . . . . 11 ⊢ 𝑍 = (0vec‘𝑈) | |
9 | eqid 2737 | . . . . . . . . . . 11 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
10 | lnon0.7 | . . . . . . . . . . 11 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
11 | 6, 7, 8, 9, 10 | lno0 28837 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑍) = (0vec‘𝑊)) |
12 | 5, 11 | sylan9eqr 2800 | . . . . . . . . 9 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑥 = 𝑍) → (𝑇‘𝑥) = (0vec‘𝑊)) |
13 | 12 | ex 416 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑥 = 𝑍 → (𝑇‘𝑥) = (0vec‘𝑊))) |
14 | 13 | ralimdv 3101 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊))) |
15 | 6, 7, 10 | lnof 28836 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
16 | 15 | ffnd 6546 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇 Fn 𝑋) |
17 | 14, 16 | jctild 529 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → (𝑇 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊)))) |
18 | fconstfv 7028 | . . . . . . 7 ⊢ (𝑇:𝑋⟶{(0vec‘𝑊)} ↔ (𝑇 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊))) | |
19 | fvex 6730 | . . . . . . . 8 ⊢ (0vec‘𝑊) ∈ V | |
20 | 19 | fconst2 7020 | . . . . . . 7 ⊢ (𝑇:𝑋⟶{(0vec‘𝑊)} ↔ 𝑇 = (𝑋 × {(0vec‘𝑊)})) |
21 | 18, 20 | bitr3i 280 | . . . . . 6 ⊢ ((𝑇 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊)) ↔ 𝑇 = (𝑋 × {(0vec‘𝑊)})) |
22 | 17, 21 | syl6ib 254 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → 𝑇 = (𝑋 × {(0vec‘𝑊)}))) |
23 | lnon0.0 | . . . . . . . 8 ⊢ 𝑂 = (𝑈 0op 𝑊) | |
24 | 6, 9, 23 | 0ofval 28868 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {(0vec‘𝑊)})) |
25 | 24 | 3adant3 1134 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑂 = (𝑋 × {(0vec‘𝑊)})) |
26 | 25 | eqeq2d 2748 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 = 𝑂 ↔ 𝑇 = (𝑋 × {(0vec‘𝑊)}))) |
27 | 22, 26 | sylibrd 262 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → 𝑇 = 𝑂)) |
28 | 4, 27 | syl5bi 245 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (¬ ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 → 𝑇 = 𝑂)) |
29 | 28 | necon1ad 2957 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ 𝑂 → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍)) |
30 | 29 | imp 410 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑇 ≠ 𝑂) → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 ∃wrex 3062 {csn 4541 × cxp 5549 Fn wfn 6375 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 NrmCVeccnv 28665 BaseSetcba 28667 0veccn0v 28669 LnOp clno 28821 0op c0o 28824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-sub 11064 df-neg 11065 df-grpo 28574 df-gid 28575 df-ginv 28576 df-ablo 28626 df-vc 28640 df-nv 28673 df-va 28676 df-ba 28677 df-sm 28678 df-0v 28679 df-nmcv 28681 df-lno 28825 df-0o 28828 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |