MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnon0 Structured version   Visualization version   GIF version

Theorem lnon0 28879
Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnon0.1 𝑋 = (BaseSet‘𝑈)
lnon0.6 𝑍 = (0vec𝑈)
lnon0.0 𝑂 = (𝑈 0op 𝑊)
lnon0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnon0 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑇𝑂) → ∃𝑥𝑋 𝑥𝑍)
Distinct variable groups:   𝑥,𝐿   𝑥,𝑇   𝑥,𝑈   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝑂(𝑥)   𝑍(𝑥)

Proof of Theorem lnon0
StepHypRef Expression
1 ralnex 3158 . . . . 5 (∀𝑥𝑋 ¬ 𝑥𝑍 ↔ ¬ ∃𝑥𝑋 𝑥𝑍)
2 nne 2944 . . . . . 6 𝑥𝑍𝑥 = 𝑍)
32ralbii 3088 . . . . 5 (∀𝑥𝑋 ¬ 𝑥𝑍 ↔ ∀𝑥𝑋 𝑥 = 𝑍)
41, 3bitr3i 280 . . . 4 (¬ ∃𝑥𝑋 𝑥𝑍 ↔ ∀𝑥𝑋 𝑥 = 𝑍)
5 fveq2 6717 . . . . . . . . . 10 (𝑥 = 𝑍 → (𝑇𝑥) = (𝑇𝑍))
6 lnon0.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
7 eqid 2737 . . . . . . . . . . 11 (BaseSet‘𝑊) = (BaseSet‘𝑊)
8 lnon0.6 . . . . . . . . . . 11 𝑍 = (0vec𝑈)
9 eqid 2737 . . . . . . . . . . 11 (0vec𝑊) = (0vec𝑊)
10 lnon0.7 . . . . . . . . . . 11 𝐿 = (𝑈 LnOp 𝑊)
116, 7, 8, 9, 10lno0 28837 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍) = (0vec𝑊))
125, 11sylan9eqr 2800 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑥 = 𝑍) → (𝑇𝑥) = (0vec𝑊))
1312ex 416 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑥 = 𝑍 → (𝑇𝑥) = (0vec𝑊)))
1413ralimdv 3101 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍 → ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)))
156, 7, 10lnof 28836 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
1615ffnd 6546 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇 Fn 𝑋)
1714, 16jctild 529 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍 → (𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊))))
18 fconstfv 7028 . . . . . . 7 (𝑇:𝑋⟶{(0vec𝑊)} ↔ (𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)))
19 fvex 6730 . . . . . . . 8 (0vec𝑊) ∈ V
2019fconst2 7020 . . . . . . 7 (𝑇:𝑋⟶{(0vec𝑊)} ↔ 𝑇 = (𝑋 × {(0vec𝑊)}))
2118, 20bitr3i 280 . . . . . 6 ((𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)) ↔ 𝑇 = (𝑋 × {(0vec𝑊)}))
2217, 21syl6ib 254 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍𝑇 = (𝑋 × {(0vec𝑊)})))
23 lnon0.0 . . . . . . . 8 𝑂 = (𝑈 0op 𝑊)
246, 9, 230ofval 28868 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {(0vec𝑊)}))
25243adant3 1134 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑂 = (𝑋 × {(0vec𝑊)}))
2625eqeq2d 2748 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇 = 𝑂𝑇 = (𝑋 × {(0vec𝑊)})))
2722, 26sylibrd 262 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍𝑇 = 𝑂))
284, 27syl5bi 245 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (¬ ∃𝑥𝑋 𝑥𝑍𝑇 = 𝑂))
2928necon1ad 2957 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑂 → ∃𝑥𝑋 𝑥𝑍))
3029imp 410 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑇𝑂) → ∃𝑥𝑋 𝑥𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  {csn 4541   × cxp 5549   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  NrmCVeccnv 28665  BaseSetcba 28667  0veccn0v 28669   LnOp clno 28821   0op c0o 28824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-ltxr 10872  df-sub 11064  df-neg 11065  df-grpo 28574  df-gid 28575  df-ginv 28576  df-ablo 28626  df-vc 28640  df-nv 28673  df-va 28676  df-ba 28677  df-sm 28678  df-0v 28679  df-nmcv 28681  df-lno 28825  df-0o 28828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator