MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnon0 Structured version   Visualization version   GIF version

Theorem lnon0 30784
Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnon0.1 𝑋 = (BaseSet‘𝑈)
lnon0.6 𝑍 = (0vec𝑈)
lnon0.0 𝑂 = (𝑈 0op 𝑊)
lnon0.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnon0 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑇𝑂) → ∃𝑥𝑋 𝑥𝑍)
Distinct variable groups:   𝑥,𝐿   𝑥,𝑇   𝑥,𝑈   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝑂(𝑥)   𝑍(𝑥)

Proof of Theorem lnon0
StepHypRef Expression
1 ralnex 3063 . . . . 5 (∀𝑥𝑋 ¬ 𝑥𝑍 ↔ ¬ ∃𝑥𝑋 𝑥𝑍)
2 nne 2937 . . . . . 6 𝑥𝑍𝑥 = 𝑍)
32ralbii 3083 . . . . 5 (∀𝑥𝑋 ¬ 𝑥𝑍 ↔ ∀𝑥𝑋 𝑥 = 𝑍)
41, 3bitr3i 277 . . . 4 (¬ ∃𝑥𝑋 𝑥𝑍 ↔ ∀𝑥𝑋 𝑥 = 𝑍)
5 fveq2 6881 . . . . . . . . . 10 (𝑥 = 𝑍 → (𝑇𝑥) = (𝑇𝑍))
6 lnon0.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
7 eqid 2736 . . . . . . . . . . 11 (BaseSet‘𝑊) = (BaseSet‘𝑊)
8 lnon0.6 . . . . . . . . . . 11 𝑍 = (0vec𝑈)
9 eqid 2736 . . . . . . . . . . 11 (0vec𝑊) = (0vec𝑊)
10 lnon0.7 . . . . . . . . . . 11 𝐿 = (𝑈 LnOp 𝑊)
116, 7, 8, 9, 10lno0 30742 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍) = (0vec𝑊))
125, 11sylan9eqr 2793 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑥 = 𝑍) → (𝑇𝑥) = (0vec𝑊))
1312ex 412 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑥 = 𝑍 → (𝑇𝑥) = (0vec𝑊)))
1413ralimdv 3155 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍 → ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)))
156, 7, 10lnof 30741 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
1615ffnd 6712 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇 Fn 𝑋)
1714, 16jctild 525 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍 → (𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊))))
18 fconstfv 7209 . . . . . . 7 (𝑇:𝑋⟶{(0vec𝑊)} ↔ (𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)))
19 fvex 6894 . . . . . . . 8 (0vec𝑊) ∈ V
2019fconst2 7202 . . . . . . 7 (𝑇:𝑋⟶{(0vec𝑊)} ↔ 𝑇 = (𝑋 × {(0vec𝑊)}))
2118, 20bitr3i 277 . . . . . 6 ((𝑇 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑇𝑥) = (0vec𝑊)) ↔ 𝑇 = (𝑋 × {(0vec𝑊)}))
2217, 21imbitrdi 251 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍𝑇 = (𝑋 × {(0vec𝑊)})))
23 lnon0.0 . . . . . . . 8 𝑂 = (𝑈 0op 𝑊)
246, 9, 230ofval 30773 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {(0vec𝑊)}))
25243adant3 1132 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑂 = (𝑋 × {(0vec𝑊)}))
2625eqeq2d 2747 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇 = 𝑂𝑇 = (𝑋 × {(0vec𝑊)})))
2722, 26sylibrd 259 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (∀𝑥𝑋 𝑥 = 𝑍𝑇 = 𝑂))
284, 27biimtrid 242 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (¬ ∃𝑥𝑋 𝑥𝑍𝑇 = 𝑂))
2928necon1ad 2950 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑂 → ∃𝑥𝑋 𝑥𝑍))
3029imp 406 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ 𝑇𝑂) → ∃𝑥𝑋 𝑥𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {csn 4606   × cxp 5657   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  NrmCVeccnv 30570  BaseSetcba 30572  0veccn0v 30574   LnOp clno 30726   0op c0o 30729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-sub 11473  df-neg 11474  df-grpo 30479  df-gid 30480  df-ginv 30481  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-nmcv 30586  df-lno 30730  df-0o 30733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator