| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lnon0 | Structured version Visualization version GIF version | ||
| Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnon0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| lnon0.6 | ⊢ 𝑍 = (0vec‘𝑈) |
| lnon0.0 | ⊢ 𝑂 = (𝑈 0op 𝑊) |
| lnon0.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| Ref | Expression |
|---|---|
| lnon0 | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑇 ≠ 𝑂) → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 3063 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 ¬ 𝑥 ≠ 𝑍 ↔ ¬ ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) | |
| 2 | nne 2937 | . . . . . 6 ⊢ (¬ 𝑥 ≠ 𝑍 ↔ 𝑥 = 𝑍) | |
| 3 | 2 | ralbii 3083 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 ¬ 𝑥 ≠ 𝑍 ↔ ∀𝑥 ∈ 𝑋 𝑥 = 𝑍) |
| 4 | 1, 3 | bitr3i 277 | . . . 4 ⊢ (¬ ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 ↔ ∀𝑥 ∈ 𝑋 𝑥 = 𝑍) |
| 5 | fveq2 6881 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑍 → (𝑇‘𝑥) = (𝑇‘𝑍)) | |
| 6 | lnon0.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 7 | eqid 2736 | . . . . . . . . . . 11 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
| 8 | lnon0.6 | . . . . . . . . . . 11 ⊢ 𝑍 = (0vec‘𝑈) | |
| 9 | eqid 2736 | . . . . . . . . . . 11 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
| 10 | lnon0.7 | . . . . . . . . . . 11 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 11 | 6, 7, 8, 9, 10 | lno0 30742 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑍) = (0vec‘𝑊)) |
| 12 | 5, 11 | sylan9eqr 2793 | . . . . . . . . 9 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑥 = 𝑍) → (𝑇‘𝑥) = (0vec‘𝑊)) |
| 13 | 12 | ex 412 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑥 = 𝑍 → (𝑇‘𝑥) = (0vec‘𝑊))) |
| 14 | 13 | ralimdv 3155 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊))) |
| 15 | 6, 7, 10 | lnof 30741 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
| 16 | 15 | ffnd 6712 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇 Fn 𝑋) |
| 17 | 14, 16 | jctild 525 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → (𝑇 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊)))) |
| 18 | fconstfv 7209 | . . . . . . 7 ⊢ (𝑇:𝑋⟶{(0vec‘𝑊)} ↔ (𝑇 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊))) | |
| 19 | fvex 6894 | . . . . . . . 8 ⊢ (0vec‘𝑊) ∈ V | |
| 20 | 19 | fconst2 7202 | . . . . . . 7 ⊢ (𝑇:𝑋⟶{(0vec‘𝑊)} ↔ 𝑇 = (𝑋 × {(0vec‘𝑊)})) |
| 21 | 18, 20 | bitr3i 277 | . . . . . 6 ⊢ ((𝑇 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊)) ↔ 𝑇 = (𝑋 × {(0vec‘𝑊)})) |
| 22 | 17, 21 | imbitrdi 251 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → 𝑇 = (𝑋 × {(0vec‘𝑊)}))) |
| 23 | lnon0.0 | . . . . . . . 8 ⊢ 𝑂 = (𝑈 0op 𝑊) | |
| 24 | 6, 9, 23 | 0ofval 30773 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {(0vec‘𝑊)})) |
| 25 | 24 | 3adant3 1132 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑂 = (𝑋 × {(0vec‘𝑊)})) |
| 26 | 25 | eqeq2d 2747 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 = 𝑂 ↔ 𝑇 = (𝑋 × {(0vec‘𝑊)}))) |
| 27 | 22, 26 | sylibrd 259 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → 𝑇 = 𝑂)) |
| 28 | 4, 27 | biimtrid 242 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (¬ ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 → 𝑇 = 𝑂)) |
| 29 | 28 | necon1ad 2950 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ 𝑂 → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍)) |
| 30 | 29 | imp 406 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑇 ≠ 𝑂) → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 {csn 4606 × cxp 5657 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 NrmCVeccnv 30570 BaseSetcba 30572 0veccn0v 30574 LnOp clno 30726 0op c0o 30729 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-grpo 30479 df-gid 30480 df-ginv 30481 df-ablo 30531 df-vc 30545 df-nv 30578 df-va 30581 df-ba 30582 df-sm 30583 df-0v 30584 df-nmcv 30586 df-lno 30730 df-0o 30733 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |