| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lnon0 | Structured version Visualization version GIF version | ||
| Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnon0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| lnon0.6 | ⊢ 𝑍 = (0vec‘𝑈) |
| lnon0.0 | ⊢ 𝑂 = (𝑈 0op 𝑊) |
| lnon0.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| Ref | Expression |
|---|---|
| lnon0 | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑇 ≠ 𝑂) → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 3059 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 ¬ 𝑥 ≠ 𝑍 ↔ ¬ ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) | |
| 2 | nne 2933 | . . . . . 6 ⊢ (¬ 𝑥 ≠ 𝑍 ↔ 𝑥 = 𝑍) | |
| 3 | 2 | ralbii 3079 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 ¬ 𝑥 ≠ 𝑍 ↔ ∀𝑥 ∈ 𝑋 𝑥 = 𝑍) |
| 4 | 1, 3 | bitr3i 277 | . . . 4 ⊢ (¬ ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 ↔ ∀𝑥 ∈ 𝑋 𝑥 = 𝑍) |
| 5 | fveq2 6830 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑍 → (𝑇‘𝑥) = (𝑇‘𝑍)) | |
| 6 | lnon0.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 7 | eqid 2733 | . . . . . . . . . . 11 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
| 8 | lnon0.6 | . . . . . . . . . . 11 ⊢ 𝑍 = (0vec‘𝑈) | |
| 9 | eqid 2733 | . . . . . . . . . . 11 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
| 10 | lnon0.7 | . . . . . . . . . . 11 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 11 | 6, 7, 8, 9, 10 | lno0 30740 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑍) = (0vec‘𝑊)) |
| 12 | 5, 11 | sylan9eqr 2790 | . . . . . . . . 9 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑥 = 𝑍) → (𝑇‘𝑥) = (0vec‘𝑊)) |
| 13 | 12 | ex 412 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑥 = 𝑍 → (𝑇‘𝑥) = (0vec‘𝑊))) |
| 14 | 13 | ralimdv 3147 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊))) |
| 15 | 6, 7, 10 | lnof 30739 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
| 16 | 15 | ffnd 6659 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇 Fn 𝑋) |
| 17 | 14, 16 | jctild 525 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → (𝑇 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊)))) |
| 18 | fconstfv 7154 | . . . . . . 7 ⊢ (𝑇:𝑋⟶{(0vec‘𝑊)} ↔ (𝑇 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊))) | |
| 19 | fvex 6843 | . . . . . . . 8 ⊢ (0vec‘𝑊) ∈ V | |
| 20 | 19 | fconst2 7147 | . . . . . . 7 ⊢ (𝑇:𝑋⟶{(0vec‘𝑊)} ↔ 𝑇 = (𝑋 × {(0vec‘𝑊)})) |
| 21 | 18, 20 | bitr3i 277 | . . . . . 6 ⊢ ((𝑇 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊)) ↔ 𝑇 = (𝑋 × {(0vec‘𝑊)})) |
| 22 | 17, 21 | imbitrdi 251 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → 𝑇 = (𝑋 × {(0vec‘𝑊)}))) |
| 23 | lnon0.0 | . . . . . . . 8 ⊢ 𝑂 = (𝑈 0op 𝑊) | |
| 24 | 6, 9, 23 | 0ofval 30771 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {(0vec‘𝑊)})) |
| 25 | 24 | 3adant3 1132 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑂 = (𝑋 × {(0vec‘𝑊)})) |
| 26 | 25 | eqeq2d 2744 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 = 𝑂 ↔ 𝑇 = (𝑋 × {(0vec‘𝑊)}))) |
| 27 | 22, 26 | sylibrd 259 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → 𝑇 = 𝑂)) |
| 28 | 4, 27 | biimtrid 242 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (¬ ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 → 𝑇 = 𝑂)) |
| 29 | 28 | necon1ad 2946 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ 𝑂 → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍)) |
| 30 | 29 | imp 406 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑇 ≠ 𝑂) → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 {csn 4577 × cxp 5619 Fn wfn 6483 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 NrmCVeccnv 30568 BaseSetcba 30570 0veccn0v 30572 LnOp clno 30724 0op c0o 30727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-ltxr 11160 df-sub 11355 df-neg 11356 df-grpo 30477 df-gid 30478 df-ginv 30479 df-ablo 30529 df-vc 30543 df-nv 30576 df-va 30579 df-ba 30580 df-sm 30581 df-0v 30582 df-nmcv 30584 df-lno 30728 df-0o 30731 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |