Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lnon0 | Structured version Visualization version GIF version |
Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnon0.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
lnon0.6 | ⊢ 𝑍 = (0vec‘𝑈) |
lnon0.0 | ⊢ 𝑂 = (𝑈 0op 𝑊) |
lnon0.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
lnon0 | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑇 ≠ 𝑂) → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3073 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 ¬ 𝑥 ≠ 𝑍 ↔ ¬ ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) | |
2 | nne 2945 | . . . . . 6 ⊢ (¬ 𝑥 ≠ 𝑍 ↔ 𝑥 = 𝑍) | |
3 | 2 | ralbii 3093 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 ¬ 𝑥 ≠ 𝑍 ↔ ∀𝑥 ∈ 𝑋 𝑥 = 𝑍) |
4 | 1, 3 | bitr3i 277 | . . . 4 ⊢ (¬ ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 ↔ ∀𝑥 ∈ 𝑋 𝑥 = 𝑍) |
5 | fveq2 6804 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑍 → (𝑇‘𝑥) = (𝑇‘𝑍)) | |
6 | lnon0.1 | . . . . . . . . . . 11 ⊢ 𝑋 = (BaseSet‘𝑈) | |
7 | eqid 2736 | . . . . . . . . . . 11 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
8 | lnon0.6 | . . . . . . . . . . 11 ⊢ 𝑍 = (0vec‘𝑈) | |
9 | eqid 2736 | . . . . . . . . . . 11 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
10 | lnon0.7 | . . . . . . . . . . 11 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
11 | 6, 7, 8, 9, 10 | lno0 29163 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑍) = (0vec‘𝑊)) |
12 | 5, 11 | sylan9eqr 2798 | . . . . . . . . 9 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑥 = 𝑍) → (𝑇‘𝑥) = (0vec‘𝑊)) |
13 | 12 | ex 414 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑥 = 𝑍 → (𝑇‘𝑥) = (0vec‘𝑊))) |
14 | 13 | ralimdv 3163 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊))) |
15 | 6, 7, 10 | lnof 29162 | . . . . . . . 8 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
16 | 15 | ffnd 6631 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇 Fn 𝑋) |
17 | 14, 16 | jctild 527 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → (𝑇 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊)))) |
18 | fconstfv 7120 | . . . . . . 7 ⊢ (𝑇:𝑋⟶{(0vec‘𝑊)} ↔ (𝑇 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊))) | |
19 | fvex 6817 | . . . . . . . 8 ⊢ (0vec‘𝑊) ∈ V | |
20 | 19 | fconst2 7112 | . . . . . . 7 ⊢ (𝑇:𝑋⟶{(0vec‘𝑊)} ↔ 𝑇 = (𝑋 × {(0vec‘𝑊)})) |
21 | 18, 20 | bitr3i 277 | . . . . . 6 ⊢ ((𝑇 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑇‘𝑥) = (0vec‘𝑊)) ↔ 𝑇 = (𝑋 × {(0vec‘𝑊)})) |
22 | 17, 21 | syl6ib 251 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → 𝑇 = (𝑋 × {(0vec‘𝑊)}))) |
23 | lnon0.0 | . . . . . . . 8 ⊢ 𝑂 = (𝑈 0op 𝑊) | |
24 | 6, 9, 23 | 0ofval 29194 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {(0vec‘𝑊)})) |
25 | 24 | 3adant3 1132 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑂 = (𝑋 × {(0vec‘𝑊)})) |
26 | 25 | eqeq2d 2747 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 = 𝑂 ↔ 𝑇 = (𝑋 × {(0vec‘𝑊)}))) |
27 | 22, 26 | sylibrd 259 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (∀𝑥 ∈ 𝑋 𝑥 = 𝑍 → 𝑇 = 𝑂)) |
28 | 4, 27 | syl5bi 242 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (¬ ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍 → 𝑇 = 𝑂)) |
29 | 28 | necon1ad 2958 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ 𝑂 → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍)) |
30 | 29 | imp 408 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑇 ≠ 𝑂) → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 {csn 4565 × cxp 5598 Fn wfn 6453 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 NrmCVeccnv 28991 BaseSetcba 28993 0veccn0v 28995 LnOp clno 29147 0op c0o 29150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-ltxr 11060 df-sub 11253 df-neg 11254 df-grpo 28900 df-gid 28901 df-ginv 28902 df-ablo 28952 df-vc 28966 df-nv 28999 df-va 29002 df-ba 29003 df-sm 29004 df-0v 29005 df-nmcv 29007 df-lno 29151 df-0o 29154 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |