Step | Hyp | Ref
| Expression |
1 | | ralnex 3072 |
. . . . 5
β’
(βπ₯ β
π Β¬ π₯ β π β Β¬ βπ₯ β π π₯ β π) |
2 | | nne 2944 |
. . . . . 6
β’ (Β¬
π₯ β π β π₯ = π) |
3 | 2 | ralbii 3093 |
. . . . 5
β’
(βπ₯ β
π Β¬ π₯ β π β βπ₯ β π π₯ = π) |
4 | 1, 3 | bitr3i 276 |
. . . 4
β’ (Β¬
βπ₯ β π π₯ β π β βπ₯ β π π₯ = π) |
5 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π₯ = π β (πβπ₯) = (πβπ)) |
6 | | lnon0.1 |
. . . . . . . . . . 11
β’ π = (BaseSetβπ) |
7 | | eqid 2732 |
. . . . . . . . . . 11
β’
(BaseSetβπ) =
(BaseSetβπ) |
8 | | lnon0.6 |
. . . . . . . . . . 11
β’ π = (0vecβπ) |
9 | | eqid 2732 |
. . . . . . . . . . 11
β’
(0vecβπ) = (0vecβπ) |
10 | | lnon0.7 |
. . . . . . . . . . 11
β’ πΏ = (π LnOp π) |
11 | 6, 7, 8, 9, 10 | lno0 30264 |
. . . . . . . . . 10
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β (πβπ) = (0vecβπ)) |
12 | 5, 11 | sylan9eqr 2794 |
. . . . . . . . 9
β’ (((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β§ π₯ = π) β (πβπ₯) = (0vecβπ)) |
13 | 12 | ex 413 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β (π₯ = π β (πβπ₯) = (0vecβπ))) |
14 | 13 | ralimdv 3169 |
. . . . . . 7
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β (βπ₯ β π π₯ = π β βπ₯ β π (πβπ₯) = (0vecβπ))) |
15 | 6, 7, 10 | lnof 30263 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β π:πβΆ(BaseSetβπ)) |
16 | 15 | ffnd 6718 |
. . . . . . 7
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β π Fn π) |
17 | 14, 16 | jctild 526 |
. . . . . 6
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β (βπ₯ β π π₯ = π β (π Fn π β§ βπ₯ β π (πβπ₯) = (0vecβπ)))) |
18 | | fconstfv 7216 |
. . . . . . 7
β’ (π:πβΆ{(0vecβπ)} β (π Fn π β§ βπ₯ β π (πβπ₯) = (0vecβπ))) |
19 | | fvex 6904 |
. . . . . . . 8
β’
(0vecβπ) β V |
20 | 19 | fconst2 7208 |
. . . . . . 7
β’ (π:πβΆ{(0vecβπ)} β π = (π Γ {(0vecβπ)})) |
21 | 18, 20 | bitr3i 276 |
. . . . . 6
β’ ((π Fn π β§ βπ₯ β π (πβπ₯) = (0vecβπ)) β π = (π Γ {(0vecβπ)})) |
22 | 17, 21 | imbitrdi 250 |
. . . . 5
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β (βπ₯ β π π₯ = π β π = (π Γ {(0vecβπ)}))) |
23 | | lnon0.0 |
. . . . . . . 8
β’ π = (π 0op π) |
24 | 6, 9, 23 | 0ofval 30295 |
. . . . . . 7
β’ ((π β NrmCVec β§ π β NrmCVec) β π = (π Γ {(0vecβπ)})) |
25 | 24 | 3adant3 1132 |
. . . . . 6
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β π = (π Γ {(0vecβπ)})) |
26 | 25 | eqeq2d 2743 |
. . . . 5
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β (π = π β π = (π Γ {(0vecβπ)}))) |
27 | 22, 26 | sylibrd 258 |
. . . 4
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β (βπ₯ β π π₯ = π β π = π)) |
28 | 4, 27 | biimtrid 241 |
. . 3
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β (Β¬ βπ₯ β π π₯ β π β π = π)) |
29 | 28 | necon1ad 2957 |
. 2
β’ ((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β (π β π β βπ₯ β π π₯ β π)) |
30 | 29 | imp 407 |
1
β’ (((π β NrmCVec β§ π β NrmCVec β§ π β πΏ) β§ π β π) β βπ₯ β π π₯ β π) |