MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocni Structured version   Visualization version   GIF version

Theorem blocni 30837
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8 𝐶 = (IndMet‘𝑈)
blocni.d 𝐷 = (IndMet‘𝑊)
blocni.j 𝐽 = (MetOpen‘𝐶)
blocni.k 𝐾 = (MetOpen‘𝐷)
blocni.4 𝐿 = (𝑈 LnOp 𝑊)
blocni.5 𝐵 = (𝑈 BLnOp 𝑊)
blocni.u 𝑈 ∈ NrmCVec
blocni.w 𝑊 ∈ NrmCVec
blocni.l 𝑇𝐿
Assertion
Ref Expression
blocni (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵)

Proof of Theorem blocni
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . 4 𝑈 ∈ NrmCVec
2 eqid 2740 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
3 eqid 2740 . . . . 5 (0vec𝑈) = (0vec𝑈)
42, 3nvzcl 30666 . . . 4 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ (BaseSet‘𝑈))
51, 4ax-mp 5 . . 3 (0vec𝑈) ∈ (BaseSet‘𝑈)
6 blocni.8 . . . . . . . . . 10 𝐶 = (IndMet‘𝑈)
72, 6imsmet 30723 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
81, 7ax-mp 5 . . . . . . . 8 𝐶 ∈ (Met‘(BaseSet‘𝑈))
9 metxmet 24365 . . . . . . . 8 (𝐶 ∈ (Met‘(BaseSet‘𝑈)) → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
108, 9ax-mp 5 . . . . . . 7 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))
11 blocni.j . . . . . . . 8 𝐽 = (MetOpen‘𝐶)
1211mopntopon 24470 . . . . . . 7 (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
1310, 12ax-mp 5 . . . . . 6 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))
1413toponunii 22943 . . . . 5 (BaseSet‘𝑈) = 𝐽
1514cncnpi 23307 . . . 4 ((𝑇 ∈ (𝐽 Cn 𝐾) ∧ (0vec𝑈) ∈ (BaseSet‘𝑈)) → 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈)))
165, 15mpan2 690 . . 3 (𝑇 ∈ (𝐽 Cn 𝐾) → 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈)))
17 blocni.d . . . 4 𝐷 = (IndMet‘𝑊)
18 blocni.k . . . 4 𝐾 = (MetOpen‘𝐷)
19 blocni.4 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
20 blocni.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
21 blocni.w . . . 4 𝑊 ∈ NrmCVec
22 blocni.l . . . 4 𝑇𝐿
236, 17, 11, 18, 19, 20, 1, 21, 22, 2blocnilem 30836 . . 3 (((0vec𝑈) ∈ (BaseSet‘𝑈) ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈))) → 𝑇𝐵)
245, 16, 23sylancr 586 . 2 (𝑇 ∈ (𝐽 Cn 𝐾) → 𝑇𝐵)
25 eleq1 2832 . . 3 (𝑇 = (𝑈 0op 𝑊) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾)))
26 simprr 772 . . . . . . . 8 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
27 eqid 2740 . . . . . . . . . . . . 13 (BaseSet‘𝑊) = (BaseSet‘𝑊)
28 eqid 2740 . . . . . . . . . . . . 13 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
292, 27, 28, 20nmblore 30818 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
301, 21, 29mp3an12 1451 . . . . . . . . . . 11 (𝑇𝐵 → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
31 eqid 2740 . . . . . . . . . . . . . 14 (𝑈 0op 𝑊) = (𝑈 0op 𝑊)
3228, 31, 19nmlnogt0 30829 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇 ≠ (𝑈 0op 𝑊) ↔ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
331, 21, 22, 32mp3an 1461 . . . . . . . . . . . 12 (𝑇 ≠ (𝑈 0op 𝑊) ↔ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))
3433biimpi 216 . . . . . . . . . . 11 (𝑇 ≠ (𝑈 0op 𝑊) → 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))
3530, 34anim12i 612 . . . . . . . . . 10 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
36 elrp 13059 . . . . . . . . . 10 (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+ ↔ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
3735, 36sylibr 234 . . . . . . . . 9 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+)
3837adantr 480 . . . . . . . 8 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+)
3926, 38rpdivcld 13116 . . . . . . 7 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) ∈ ℝ+)
40 simprl 770 . . . . . . . . . . 11 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → 𝑥 ∈ (BaseSet‘𝑈))
41 metcl 24363 . . . . . . . . . . . 12 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
428, 41mp3an1 1448 . . . . . . . . . . 11 ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
4340, 42sylan 579 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
44 simplrr 777 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ ℝ+)
4544rpred 13099 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ ℝ)
4635ad2antrr 725 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
47 ltmuldiv2 12169 . . . . . . . . . 10 (((𝑥𝐶𝑤) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
4843, 45, 46, 47syl3anc 1371 . . . . . . . . 9 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
49 id 22 . . . . . . . . . . . 12 ((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) → (𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)))
5049ad2ant2r 746 . . . . . . . . . . 11 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → (𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)))
512, 27, 6, 17, 28, 20, 1, 21blometi 30835 . . . . . . . . . . . 12 ((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
52513expa 1118 . . . . . . . . . . 11 (((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
5350, 52sylan 579 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
542, 27, 19lnof 30787 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
551, 21, 22, 54mp3an 1461 . . . . . . . . . . . . . 14 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)
5655ffvelcdmi 7117 . . . . . . . . . . . . 13 (𝑥 ∈ (BaseSet‘𝑈) → (𝑇𝑥) ∈ (BaseSet‘𝑊))
5755ffvelcdmi 7117 . . . . . . . . . . . . 13 (𝑤 ∈ (BaseSet‘𝑈) → (𝑇𝑤) ∈ (BaseSet‘𝑊))
5827, 17imsmet 30723 . . . . . . . . . . . . . . 15 (𝑊 ∈ NrmCVec → 𝐷 ∈ (Met‘(BaseSet‘𝑊)))
5921, 58ax-mp 5 . . . . . . . . . . . . . 14 𝐷 ∈ (Met‘(BaseSet‘𝑊))
60 metcl 24363 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘(BaseSet‘𝑊)) ∧ (𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑤) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6159, 60mp3an1 1448 . . . . . . . . . . . . 13 (((𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑤) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6256, 57, 61syl2an 595 . . . . . . . . . . . 12 ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6340, 62sylan 579 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
64 remulcl 11269 . . . . . . . . . . . . . . 15 ((((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ (𝑥𝐶𝑤) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6530, 42, 64syl2an 595 . . . . . . . . . . . . . 14 ((𝑇𝐵 ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6665anassrs 467 . . . . . . . . . . . . 13 (((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6766adantllr 718 . . . . . . . . . . . 12 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6867adantlrr 720 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
69 lelttr 11380 . . . . . . . . . . 11 ((((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7063, 68, 45, 69syl3anc 1371 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7153, 70mpand 694 . . . . . . . . 9 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7248, 71sylbird 260 . . . . . . . 8 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7372ralrimiva 3152 . . . . . . 7 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
74 breq2 5170 . . . . . . . 8 (𝑧 = (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑥𝐶𝑤) < 𝑧 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
7574rspceaimv 3641 . . . . . . 7 (((𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) ∈ ℝ+ ∧ ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7639, 73, 75syl2anc 583 . . . . . 6 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7776ralrimivva 3208 . . . . 5 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7877, 55jctil 519 . . . 4 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
79 metxmet 24365 . . . . . 6 (𝐷 ∈ (Met‘(BaseSet‘𝑊)) → 𝐷 ∈ (∞Met‘(BaseSet‘𝑊)))
8059, 79ax-mp 5 . . . . 5 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))
8111, 18metcn 24577 . . . . 5 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))))
8210, 80, 81mp2an 691 . . . 4 (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
8378, 82sylibr 234 . . 3 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → 𝑇 ∈ (𝐽 Cn 𝐾))
84 eqid 2740 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
852, 84, 310ofval 30819 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = ((BaseSet‘𝑈) × {(0vec𝑊)}))
861, 21, 85mp2an 691 . . . . 5 (𝑈 0op 𝑊) = ((BaseSet‘𝑈) × {(0vec𝑊)})
8718mopntopon 24470 . . . . . . 7 (𝐷 ∈ (∞Met‘(BaseSet‘𝑊)) → 𝐾 ∈ (TopOn‘(BaseSet‘𝑊)))
8880, 87ax-mp 5 . . . . . 6 𝐾 ∈ (TopOn‘(BaseSet‘𝑊))
8927, 84nvzcl 30666 . . . . . . 7 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
9021, 89ax-mp 5 . . . . . 6 (0vec𝑊) ∈ (BaseSet‘𝑊)
91 cnconst2 23312 . . . . . 6 ((𝐽 ∈ (TopOn‘(BaseSet‘𝑈)) ∧ 𝐾 ∈ (TopOn‘(BaseSet‘𝑊)) ∧ (0vec𝑊) ∈ (BaseSet‘𝑊)) → ((BaseSet‘𝑈) × {(0vec𝑊)}) ∈ (𝐽 Cn 𝐾))
9213, 88, 90, 91mp3an 1461 . . . . 5 ((BaseSet‘𝑈) × {(0vec𝑊)}) ∈ (𝐽 Cn 𝐾)
9386, 92eqeltri 2840 . . . 4 (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾)
9493a1i 11 . . 3 (𝑇𝐵 → (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾))
9525, 83, 94pm2.61ne 3033 . 2 (𝑇𝐵𝑇 ∈ (𝐽 Cn 𝐾))
9624, 95impbii 209 1 (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {csn 4648   class class class wbr 5166   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   · cmul 11189   < clt 11324  cle 11325   / cdiv 11947  +crp 13057  ∞Metcxmet 21372  Metcmet 21373  MetOpencmopn 21377  TopOnctopon 22937   Cn ccn 23253   CnP ccnp 23254  NrmCVeccnv 30616  BaseSetcba 30618  0veccn0v 30620  IndMetcims 30623   LnOp clno 30772   normOpOLD cnmoo 30773   BLnOp cblo 30774   0op c0o 30775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256  df-cnp 23257  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-lno 30776  df-nmoo 30777  df-blo 30778  df-0o 30779
This theorem is referenced by:  lnocni  30838  blocn  30839
  Copyright terms: Public domain W3C validator