MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocni Structured version   Visualization version   GIF version

Theorem blocni 28592
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8 𝐶 = (IndMet‘𝑈)
blocni.d 𝐷 = (IndMet‘𝑊)
blocni.j 𝐽 = (MetOpen‘𝐶)
blocni.k 𝐾 = (MetOpen‘𝐷)
blocni.4 𝐿 = (𝑈 LnOp 𝑊)
blocni.5 𝐵 = (𝑈 BLnOp 𝑊)
blocni.u 𝑈 ∈ NrmCVec
blocni.w 𝑊 ∈ NrmCVec
blocni.l 𝑇𝐿
Assertion
Ref Expression
blocni (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵)

Proof of Theorem blocni
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . 4 𝑈 ∈ NrmCVec
2 eqid 2801 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
3 eqid 2801 . . . . 5 (0vec𝑈) = (0vec𝑈)
42, 3nvzcl 28421 . . . 4 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ (BaseSet‘𝑈))
51, 4ax-mp 5 . . 3 (0vec𝑈) ∈ (BaseSet‘𝑈)
6 blocni.8 . . . . . . . . . 10 𝐶 = (IndMet‘𝑈)
72, 6imsmet 28478 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
81, 7ax-mp 5 . . . . . . . 8 𝐶 ∈ (Met‘(BaseSet‘𝑈))
9 metxmet 22945 . . . . . . . 8 (𝐶 ∈ (Met‘(BaseSet‘𝑈)) → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
108, 9ax-mp 5 . . . . . . 7 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))
11 blocni.j . . . . . . . 8 𝐽 = (MetOpen‘𝐶)
1211mopntopon 23050 . . . . . . 7 (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
1310, 12ax-mp 5 . . . . . 6 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))
1413toponunii 21525 . . . . 5 (BaseSet‘𝑈) = 𝐽
1514cncnpi 21887 . . . 4 ((𝑇 ∈ (𝐽 Cn 𝐾) ∧ (0vec𝑈) ∈ (BaseSet‘𝑈)) → 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈)))
165, 15mpan2 690 . . 3 (𝑇 ∈ (𝐽 Cn 𝐾) → 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈)))
17 blocni.d . . . 4 𝐷 = (IndMet‘𝑊)
18 blocni.k . . . 4 𝐾 = (MetOpen‘𝐷)
19 blocni.4 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
20 blocni.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
21 blocni.w . . . 4 𝑊 ∈ NrmCVec
22 blocni.l . . . 4 𝑇𝐿
236, 17, 11, 18, 19, 20, 1, 21, 22, 2blocnilem 28591 . . 3 (((0vec𝑈) ∈ (BaseSet‘𝑈) ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈))) → 𝑇𝐵)
245, 16, 23sylancr 590 . 2 (𝑇 ∈ (𝐽 Cn 𝐾) → 𝑇𝐵)
25 eleq1 2880 . . 3 (𝑇 = (𝑈 0op 𝑊) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾)))
26 simprr 772 . . . . . . . 8 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
27 eqid 2801 . . . . . . . . . . . . 13 (BaseSet‘𝑊) = (BaseSet‘𝑊)
28 eqid 2801 . . . . . . . . . . . . 13 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
292, 27, 28, 20nmblore 28573 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
301, 21, 29mp3an12 1448 . . . . . . . . . . 11 (𝑇𝐵 → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
31 eqid 2801 . . . . . . . . . . . . . 14 (𝑈 0op 𝑊) = (𝑈 0op 𝑊)
3228, 31, 19nmlnogt0 28584 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇 ≠ (𝑈 0op 𝑊) ↔ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
331, 21, 22, 32mp3an 1458 . . . . . . . . . . . 12 (𝑇 ≠ (𝑈 0op 𝑊) ↔ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))
3433biimpi 219 . . . . . . . . . . 11 (𝑇 ≠ (𝑈 0op 𝑊) → 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))
3530, 34anim12i 615 . . . . . . . . . 10 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
36 elrp 12383 . . . . . . . . . 10 (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+ ↔ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
3735, 36sylibr 237 . . . . . . . . 9 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+)
3837adantr 484 . . . . . . . 8 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+)
3926, 38rpdivcld 12440 . . . . . . 7 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) ∈ ℝ+)
40 simprl 770 . . . . . . . . . . 11 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → 𝑥 ∈ (BaseSet‘𝑈))
41 metcl 22943 . . . . . . . . . . . 12 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
428, 41mp3an1 1445 . . . . . . . . . . 11 ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
4340, 42sylan 583 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
44 simplrr 777 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ ℝ+)
4544rpred 12423 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ ℝ)
4635ad2antrr 725 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
47 ltmuldiv2 11507 . . . . . . . . . 10 (((𝑥𝐶𝑤) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
4843, 45, 46, 47syl3anc 1368 . . . . . . . . 9 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
49 id 22 . . . . . . . . . . . 12 ((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) → (𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)))
5049ad2ant2r 746 . . . . . . . . . . 11 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → (𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)))
512, 27, 6, 17, 28, 20, 1, 21blometi 28590 . . . . . . . . . . . 12 ((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
52513expa 1115 . . . . . . . . . . 11 (((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
5350, 52sylan 583 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
542, 27, 19lnof 28542 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
551, 21, 22, 54mp3an 1458 . . . . . . . . . . . . . 14 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)
5655ffvelrni 6831 . . . . . . . . . . . . 13 (𝑥 ∈ (BaseSet‘𝑈) → (𝑇𝑥) ∈ (BaseSet‘𝑊))
5755ffvelrni 6831 . . . . . . . . . . . . 13 (𝑤 ∈ (BaseSet‘𝑈) → (𝑇𝑤) ∈ (BaseSet‘𝑊))
5827, 17imsmet 28478 . . . . . . . . . . . . . . 15 (𝑊 ∈ NrmCVec → 𝐷 ∈ (Met‘(BaseSet‘𝑊)))
5921, 58ax-mp 5 . . . . . . . . . . . . . 14 𝐷 ∈ (Met‘(BaseSet‘𝑊))
60 metcl 22943 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘(BaseSet‘𝑊)) ∧ (𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑤) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6159, 60mp3an1 1445 . . . . . . . . . . . . 13 (((𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑤) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6256, 57, 61syl2an 598 . . . . . . . . . . . 12 ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6340, 62sylan 583 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
64 remulcl 10615 . . . . . . . . . . . . . . 15 ((((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ (𝑥𝐶𝑤) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6530, 42, 64syl2an 598 . . . . . . . . . . . . . 14 ((𝑇𝐵 ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6665anassrs 471 . . . . . . . . . . . . 13 (((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6766adantllr 718 . . . . . . . . . . . 12 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6867adantlrr 720 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
69 lelttr 10724 . . . . . . . . . . 11 ((((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7063, 68, 45, 69syl3anc 1368 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7153, 70mpand 694 . . . . . . . . 9 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7248, 71sylbird 263 . . . . . . . 8 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7372ralrimiva 3152 . . . . . . 7 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
74 breq2 5037 . . . . . . . 8 (𝑧 = (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑥𝐶𝑤) < 𝑧 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
7574rspceaimv 3579 . . . . . . 7 (((𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) ∈ ℝ+ ∧ ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7639, 73, 75syl2anc 587 . . . . . 6 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7776ralrimivva 3159 . . . . 5 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7877, 55jctil 523 . . . 4 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
79 metxmet 22945 . . . . . 6 (𝐷 ∈ (Met‘(BaseSet‘𝑊)) → 𝐷 ∈ (∞Met‘(BaseSet‘𝑊)))
8059, 79ax-mp 5 . . . . 5 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))
8111, 18metcn 23154 . . . . 5 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))))
8210, 80, 81mp2an 691 . . . 4 (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
8378, 82sylibr 237 . . 3 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → 𝑇 ∈ (𝐽 Cn 𝐾))
84 eqid 2801 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
852, 84, 310ofval 28574 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = ((BaseSet‘𝑈) × {(0vec𝑊)}))
861, 21, 85mp2an 691 . . . . 5 (𝑈 0op 𝑊) = ((BaseSet‘𝑈) × {(0vec𝑊)})
8718mopntopon 23050 . . . . . . 7 (𝐷 ∈ (∞Met‘(BaseSet‘𝑊)) → 𝐾 ∈ (TopOn‘(BaseSet‘𝑊)))
8880, 87ax-mp 5 . . . . . 6 𝐾 ∈ (TopOn‘(BaseSet‘𝑊))
8927, 84nvzcl 28421 . . . . . . 7 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
9021, 89ax-mp 5 . . . . . 6 (0vec𝑊) ∈ (BaseSet‘𝑊)
91 cnconst2 21892 . . . . . 6 ((𝐽 ∈ (TopOn‘(BaseSet‘𝑈)) ∧ 𝐾 ∈ (TopOn‘(BaseSet‘𝑊)) ∧ (0vec𝑊) ∈ (BaseSet‘𝑊)) → ((BaseSet‘𝑈) × {(0vec𝑊)}) ∈ (𝐽 Cn 𝐾))
9213, 88, 90, 91mp3an 1458 . . . . 5 ((BaseSet‘𝑈) × {(0vec𝑊)}) ∈ (𝐽 Cn 𝐾)
9386, 92eqeltri 2889 . . . 4 (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾)
9493a1i 11 . . 3 (𝑇𝐵 → (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾))
9525, 83, 94pm2.61ne 3075 . 2 (𝑇𝐵𝑇 ∈ (𝐽 Cn 𝐾))
9624, 95impbii 212 1 (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  {csn 4528   class class class wbr 5033   × cxp 5521  wf 6324  cfv 6328  (class class class)co 7139  cr 10529  0cc0 10530   · cmul 10535   < clt 10668  cle 10669   / cdiv 11290  +crp 12381  ∞Metcxmet 20080  Metcmet 20081  MetOpencmopn 20085  TopOnctopon 21519   Cn ccn 21833   CnP ccnp 21834  NrmCVeccnv 28371  BaseSetcba 28373  0veccn0v 28375  IndMetcims 28378   LnOp clno 28527   normOpOLD cnmoo 28528   BLnOp cblo 28529   0op c0o 28530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-topgen 16713  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-top 21503  df-topon 21520  df-bases 21555  df-cn 21836  df-cnp 21837  df-grpo 28280  df-gid 28281  df-ginv 28282  df-gdiv 28283  df-ablo 28332  df-vc 28346  df-nv 28379  df-va 28382  df-ba 28383  df-sm 28384  df-0v 28385  df-vs 28386  df-nmcv 28387  df-ims 28388  df-lno 28531  df-nmoo 28532  df-blo 28533  df-0o 28534
This theorem is referenced by:  lnocni  28593  blocn  28594
  Copyright terms: Public domain W3C validator