MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocni Structured version   Visualization version   GIF version

Theorem blocni 30824
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8 𝐶 = (IndMet‘𝑈)
blocni.d 𝐷 = (IndMet‘𝑊)
blocni.j 𝐽 = (MetOpen‘𝐶)
blocni.k 𝐾 = (MetOpen‘𝐷)
blocni.4 𝐿 = (𝑈 LnOp 𝑊)
blocni.5 𝐵 = (𝑈 BLnOp 𝑊)
blocni.u 𝑈 ∈ NrmCVec
blocni.w 𝑊 ∈ NrmCVec
blocni.l 𝑇𝐿
Assertion
Ref Expression
blocni (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵)

Proof of Theorem blocni
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . 4 𝑈 ∈ NrmCVec
2 eqid 2737 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
3 eqid 2737 . . . . 5 (0vec𝑈) = (0vec𝑈)
42, 3nvzcl 30653 . . . 4 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ (BaseSet‘𝑈))
51, 4ax-mp 5 . . 3 (0vec𝑈) ∈ (BaseSet‘𝑈)
6 blocni.8 . . . . . . . . . 10 𝐶 = (IndMet‘𝑈)
72, 6imsmet 30710 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
81, 7ax-mp 5 . . . . . . . 8 𝐶 ∈ (Met‘(BaseSet‘𝑈))
9 metxmet 24344 . . . . . . . 8 (𝐶 ∈ (Met‘(BaseSet‘𝑈)) → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
108, 9ax-mp 5 . . . . . . 7 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))
11 blocni.j . . . . . . . 8 𝐽 = (MetOpen‘𝐶)
1211mopntopon 24449 . . . . . . 7 (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
1310, 12ax-mp 5 . . . . . 6 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))
1413toponunii 22922 . . . . 5 (BaseSet‘𝑈) = 𝐽
1514cncnpi 23286 . . . 4 ((𝑇 ∈ (𝐽 Cn 𝐾) ∧ (0vec𝑈) ∈ (BaseSet‘𝑈)) → 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈)))
165, 15mpan2 691 . . 3 (𝑇 ∈ (𝐽 Cn 𝐾) → 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈)))
17 blocni.d . . . 4 𝐷 = (IndMet‘𝑊)
18 blocni.k . . . 4 𝐾 = (MetOpen‘𝐷)
19 blocni.4 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
20 blocni.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
21 blocni.w . . . 4 𝑊 ∈ NrmCVec
22 blocni.l . . . 4 𝑇𝐿
236, 17, 11, 18, 19, 20, 1, 21, 22, 2blocnilem 30823 . . 3 (((0vec𝑈) ∈ (BaseSet‘𝑈) ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈))) → 𝑇𝐵)
245, 16, 23sylancr 587 . 2 (𝑇 ∈ (𝐽 Cn 𝐾) → 𝑇𝐵)
25 eleq1 2829 . . 3 (𝑇 = (𝑈 0op 𝑊) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾)))
26 simprr 773 . . . . . . . 8 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
27 eqid 2737 . . . . . . . . . . . . 13 (BaseSet‘𝑊) = (BaseSet‘𝑊)
28 eqid 2737 . . . . . . . . . . . . 13 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
292, 27, 28, 20nmblore 30805 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
301, 21, 29mp3an12 1453 . . . . . . . . . . 11 (𝑇𝐵 → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
31 eqid 2737 . . . . . . . . . . . . . 14 (𝑈 0op 𝑊) = (𝑈 0op 𝑊)
3228, 31, 19nmlnogt0 30816 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇 ≠ (𝑈 0op 𝑊) ↔ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
331, 21, 22, 32mp3an 1463 . . . . . . . . . . . 12 (𝑇 ≠ (𝑈 0op 𝑊) ↔ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))
3433biimpi 216 . . . . . . . . . . 11 (𝑇 ≠ (𝑈 0op 𝑊) → 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))
3530, 34anim12i 613 . . . . . . . . . 10 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
36 elrp 13036 . . . . . . . . . 10 (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+ ↔ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
3735, 36sylibr 234 . . . . . . . . 9 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+)
3837adantr 480 . . . . . . . 8 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+)
3926, 38rpdivcld 13094 . . . . . . 7 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) ∈ ℝ+)
40 simprl 771 . . . . . . . . . . 11 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → 𝑥 ∈ (BaseSet‘𝑈))
41 metcl 24342 . . . . . . . . . . . 12 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
428, 41mp3an1 1450 . . . . . . . . . . 11 ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
4340, 42sylan 580 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
44 simplrr 778 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ ℝ+)
4544rpred 13077 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ ℝ)
4635ad2antrr 726 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
47 ltmuldiv2 12142 . . . . . . . . . 10 (((𝑥𝐶𝑤) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
4843, 45, 46, 47syl3anc 1373 . . . . . . . . 9 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
49 id 22 . . . . . . . . . . . 12 ((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) → (𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)))
5049ad2ant2r 747 . . . . . . . . . . 11 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → (𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)))
512, 27, 6, 17, 28, 20, 1, 21blometi 30822 . . . . . . . . . . . 12 ((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
52513expa 1119 . . . . . . . . . . 11 (((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
5350, 52sylan 580 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
542, 27, 19lnof 30774 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
551, 21, 22, 54mp3an 1463 . . . . . . . . . . . . . 14 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)
5655ffvelcdmi 7103 . . . . . . . . . . . . 13 (𝑥 ∈ (BaseSet‘𝑈) → (𝑇𝑥) ∈ (BaseSet‘𝑊))
5755ffvelcdmi 7103 . . . . . . . . . . . . 13 (𝑤 ∈ (BaseSet‘𝑈) → (𝑇𝑤) ∈ (BaseSet‘𝑊))
5827, 17imsmet 30710 . . . . . . . . . . . . . . 15 (𝑊 ∈ NrmCVec → 𝐷 ∈ (Met‘(BaseSet‘𝑊)))
5921, 58ax-mp 5 . . . . . . . . . . . . . 14 𝐷 ∈ (Met‘(BaseSet‘𝑊))
60 metcl 24342 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘(BaseSet‘𝑊)) ∧ (𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑤) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6159, 60mp3an1 1450 . . . . . . . . . . . . 13 (((𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑤) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6256, 57, 61syl2an 596 . . . . . . . . . . . 12 ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6340, 62sylan 580 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
64 remulcl 11240 . . . . . . . . . . . . . . 15 ((((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ (𝑥𝐶𝑤) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6530, 42, 64syl2an 596 . . . . . . . . . . . . . 14 ((𝑇𝐵 ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6665anassrs 467 . . . . . . . . . . . . 13 (((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6766adantllr 719 . . . . . . . . . . . 12 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6867adantlrr 721 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
69 lelttr 11351 . . . . . . . . . . 11 ((((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7063, 68, 45, 69syl3anc 1373 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7153, 70mpand 695 . . . . . . . . 9 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7248, 71sylbird 260 . . . . . . . 8 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7372ralrimiva 3146 . . . . . . 7 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
74 breq2 5147 . . . . . . . 8 (𝑧 = (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑥𝐶𝑤) < 𝑧 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
7574rspceaimv 3628 . . . . . . 7 (((𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) ∈ ℝ+ ∧ ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7639, 73, 75syl2anc 584 . . . . . 6 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7776ralrimivva 3202 . . . . 5 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7877, 55jctil 519 . . . 4 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
79 metxmet 24344 . . . . . 6 (𝐷 ∈ (Met‘(BaseSet‘𝑊)) → 𝐷 ∈ (∞Met‘(BaseSet‘𝑊)))
8059, 79ax-mp 5 . . . . 5 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))
8111, 18metcn 24556 . . . . 5 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))))
8210, 80, 81mp2an 692 . . . 4 (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
8378, 82sylibr 234 . . 3 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → 𝑇 ∈ (𝐽 Cn 𝐾))
84 eqid 2737 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
852, 84, 310ofval 30806 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = ((BaseSet‘𝑈) × {(0vec𝑊)}))
861, 21, 85mp2an 692 . . . . 5 (𝑈 0op 𝑊) = ((BaseSet‘𝑈) × {(0vec𝑊)})
8718mopntopon 24449 . . . . . . 7 (𝐷 ∈ (∞Met‘(BaseSet‘𝑊)) → 𝐾 ∈ (TopOn‘(BaseSet‘𝑊)))
8880, 87ax-mp 5 . . . . . 6 𝐾 ∈ (TopOn‘(BaseSet‘𝑊))
8927, 84nvzcl 30653 . . . . . . 7 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
9021, 89ax-mp 5 . . . . . 6 (0vec𝑊) ∈ (BaseSet‘𝑊)
91 cnconst2 23291 . . . . . 6 ((𝐽 ∈ (TopOn‘(BaseSet‘𝑈)) ∧ 𝐾 ∈ (TopOn‘(BaseSet‘𝑊)) ∧ (0vec𝑊) ∈ (BaseSet‘𝑊)) → ((BaseSet‘𝑈) × {(0vec𝑊)}) ∈ (𝐽 Cn 𝐾))
9213, 88, 90, 91mp3an 1463 . . . . 5 ((BaseSet‘𝑈) × {(0vec𝑊)}) ∈ (𝐽 Cn 𝐾)
9386, 92eqeltri 2837 . . . 4 (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾)
9493a1i 11 . . 3 (𝑇𝐵 → (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾))
9525, 83, 94pm2.61ne 3027 . 2 (𝑇𝐵𝑇 ∈ (𝐽 Cn 𝐾))
9624, 95impbii 209 1 (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {csn 4626   class class class wbr 5143   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155   · cmul 11160   < clt 11295  cle 11296   / cdiv 11920  +crp 13034  ∞Metcxmet 21349  Metcmet 21350  MetOpencmopn 21354  TopOnctopon 22916   Cn ccn 23232   CnP ccnp 23233  NrmCVeccnv 30603  BaseSetcba 30605  0veccn0v 30607  IndMetcims 30610   LnOp clno 30759   normOpOLD cnmoo 30760   BLnOp cblo 30761   0op c0o 30762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cn 23235  df-cnp 23236  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-lno 30763  df-nmoo 30764  df-blo 30765  df-0o 30766
This theorem is referenced by:  lnocni  30825  blocn  30826
  Copyright terms: Public domain W3C validator