MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem11 Structured version   Visualization version   GIF version

Theorem ruclem11 16288
Description: Lemma for ruc 16291. Closure lemmas for supremum. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem11 (𝜑 → (ran (1st𝐺) ⊆ ℝ ∧ ran (1st𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1))
Distinct variable groups:   𝑥,𝑚,𝑦   𝑧,𝐶   𝑧,𝑚,𝐹,𝑥,𝑦   𝑚,𝐺,𝑥,𝑦,𝑧   𝜑,𝑧   𝑧,𝐷
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem11
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ruc.1 . . . . 5 (𝜑𝐹:ℕ⟶ℝ)
2 ruc.2 . . . . 5 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
3 ruc.4 . . . . 5 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
4 ruc.5 . . . . 5 𝐺 = seq0(𝐷, 𝐶)
51, 2, 3, 4ruclem6 16283 . . . 4 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
6 1stcof 8060 . . . 4 (𝐺:ℕ0⟶(ℝ × ℝ) → (1st𝐺):ℕ0⟶ℝ)
75, 6syl 17 . . 3 (𝜑 → (1st𝐺):ℕ0⟶ℝ)
87frnd 6755 . 2 (𝜑 → ran (1st𝐺) ⊆ ℝ)
97fdmd 6757 . . . 4 (𝜑 → dom (1st𝐺) = ℕ0)
10 0nn0 12568 . . . . 5 0 ∈ ℕ0
11 ne0i 4364 . . . . 5 (0 ∈ ℕ0 → ℕ0 ≠ ∅)
1210, 11mp1i 13 . . . 4 (𝜑 → ℕ0 ≠ ∅)
139, 12eqnetrd 3014 . . 3 (𝜑 → dom (1st𝐺) ≠ ∅)
14 dm0rn0 5949 . . . 4 (dom (1st𝐺) = ∅ ↔ ran (1st𝐺) = ∅)
1514necon3bii 2999 . . 3 (dom (1st𝐺) ≠ ∅ ↔ ran (1st𝐺) ≠ ∅)
1613, 15sylib 218 . 2 (𝜑 → ran (1st𝐺) ≠ ∅)
17 fvco3 7021 . . . . . 6 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑛 ∈ ℕ0) → ((1st𝐺)‘𝑛) = (1st ‘(𝐺𝑛)))
185, 17sylan 579 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → ((1st𝐺)‘𝑛) = (1st ‘(𝐺𝑛)))
191adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝐹:ℕ⟶ℝ)
202adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
21 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
2210a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → 0 ∈ ℕ0)
2319, 20, 3, 4, 21, 22ruclem10 16287 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (1st ‘(𝐺𝑛)) < (2nd ‘(𝐺‘0)))
241, 2, 3, 4ruclem4 16282 . . . . . . . . . 10 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
2524fveq2d 6924 . . . . . . . . 9 (𝜑 → (2nd ‘(𝐺‘0)) = (2nd ‘⟨0, 1⟩))
26 c0ex 11284 . . . . . . . . . 10 0 ∈ V
27 1ex 11286 . . . . . . . . . 10 1 ∈ V
2826, 27op2nd 8039 . . . . . . . . 9 (2nd ‘⟨0, 1⟩) = 1
2925, 28eqtrdi 2796 . . . . . . . 8 (𝜑 → (2nd ‘(𝐺‘0)) = 1)
3029adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (2nd ‘(𝐺‘0)) = 1)
3123, 30breqtrd 5192 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → (1st ‘(𝐺𝑛)) < 1)
325ffvelcdmda 7118 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ (ℝ × ℝ))
33 xp1st 8062 . . . . . . . 8 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
3432, 33syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (1st ‘(𝐺𝑛)) ∈ ℝ)
35 1re 11290 . . . . . . 7 1 ∈ ℝ
36 ltle 11378 . . . . . . 7 (((1st ‘(𝐺𝑛)) ∈ ℝ ∧ 1 ∈ ℝ) → ((1st ‘(𝐺𝑛)) < 1 → (1st ‘(𝐺𝑛)) ≤ 1))
3734, 35, 36sylancl 585 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((1st ‘(𝐺𝑛)) < 1 → (1st ‘(𝐺𝑛)) ≤ 1))
3831, 37mpd 15 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (1st ‘(𝐺𝑛)) ≤ 1)
3918, 38eqbrtrd 5188 . . . 4 ((𝜑𝑛 ∈ ℕ0) → ((1st𝐺)‘𝑛) ≤ 1)
4039ralrimiva 3152 . . 3 (𝜑 → ∀𝑛 ∈ ℕ0 ((1st𝐺)‘𝑛) ≤ 1)
417ffnd 6748 . . . 4 (𝜑 → (1st𝐺) Fn ℕ0)
42 breq1 5169 . . . . 5 (𝑧 = ((1st𝐺)‘𝑛) → (𝑧 ≤ 1 ↔ ((1st𝐺)‘𝑛) ≤ 1))
4342ralrn 7122 . . . 4 ((1st𝐺) Fn ℕ0 → (∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1 ↔ ∀𝑛 ∈ ℕ0 ((1st𝐺)‘𝑛) ≤ 1))
4441, 43syl 17 . . 3 (𝜑 → (∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1 ↔ ∀𝑛 ∈ ℕ0 ((1st𝐺)‘𝑛) ≤ 1))
4540, 44mpbird 257 . 2 (𝜑 → ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1)
468, 16, 453jca 1128 1 (𝜑 → (ran (1st𝐺) ⊆ ℝ ∧ ran (1st𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  csb 3921  cun 3974  wss 3976  c0 4352  ifcif 4548  {csn 4648  cop 4654   class class class wbr 5166   × cxp 5698  dom cdm 5700  ran crn 5701  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  seqcseq 14052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053
This theorem is referenced by:  ruclem12  16289
  Copyright terms: Public domain W3C validator