Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ruclem11 | Structured version Visualization version GIF version |
Description: Lemma for ruc 15649. Closure lemmas for supremum. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
Ref | Expression |
---|---|
ruclem11 | ⊢ (𝜑 → (ran (1st ∘ 𝐺) ⊆ ℝ ∧ ran (1st ∘ 𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruc.1 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
2 | ruc.2 | . . . . 5 ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) | |
3 | ruc.4 | . . . . 5 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
4 | ruc.5 | . . . . 5 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
5 | 1, 2, 3, 4 | ruclem6 15641 | . . . 4 ⊢ (𝜑 → 𝐺:ℕ0⟶(ℝ × ℝ)) |
6 | 1stcof 7728 | . . . 4 ⊢ (𝐺:ℕ0⟶(ℝ × ℝ) → (1st ∘ 𝐺):ℕ0⟶ℝ) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → (1st ∘ 𝐺):ℕ0⟶ℝ) |
8 | 7 | frnd 6509 | . 2 ⊢ (𝜑 → ran (1st ∘ 𝐺) ⊆ ℝ) |
9 | 7 | fdmd 6512 | . . . 4 ⊢ (𝜑 → dom (1st ∘ 𝐺) = ℕ0) |
10 | 0nn0 11954 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
11 | ne0i 4235 | . . . . 5 ⊢ (0 ∈ ℕ0 → ℕ0 ≠ ∅) | |
12 | 10, 11 | mp1i 13 | . . . 4 ⊢ (𝜑 → ℕ0 ≠ ∅) |
13 | 9, 12 | eqnetrd 3018 | . . 3 ⊢ (𝜑 → dom (1st ∘ 𝐺) ≠ ∅) |
14 | dm0rn0 5770 | . . . 4 ⊢ (dom (1st ∘ 𝐺) = ∅ ↔ ran (1st ∘ 𝐺) = ∅) | |
15 | 14 | necon3bii 3003 | . . 3 ⊢ (dom (1st ∘ 𝐺) ≠ ∅ ↔ ran (1st ∘ 𝐺) ≠ ∅) |
16 | 13, 15 | sylib 221 | . 2 ⊢ (𝜑 → ran (1st ∘ 𝐺) ≠ ∅) |
17 | fvco3 6755 | . . . . . 6 ⊢ ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑛 ∈ ℕ0) → ((1st ∘ 𝐺)‘𝑛) = (1st ‘(𝐺‘𝑛))) | |
18 | 5, 17 | sylan 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((1st ∘ 𝐺)‘𝑛) = (1st ‘(𝐺‘𝑛))) |
19 | 1 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝐹:ℕ⟶ℝ) |
20 | 2 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
21 | simpr 488 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0) | |
22 | 10 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 0 ∈ ℕ0) |
23 | 19, 20, 3, 4, 21, 22 | ruclem10 15645 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (1st ‘(𝐺‘𝑛)) < (2nd ‘(𝐺‘0))) |
24 | 1, 2, 3, 4 | ruclem4 15640 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
25 | 24 | fveq2d 6666 | . . . . . . . . 9 ⊢ (𝜑 → (2nd ‘(𝐺‘0)) = (2nd ‘〈0, 1〉)) |
26 | c0ex 10678 | . . . . . . . . . 10 ⊢ 0 ∈ V | |
27 | 1ex 10680 | . . . . . . . . . 10 ⊢ 1 ∈ V | |
28 | 26, 27 | op2nd 7707 | . . . . . . . . 9 ⊢ (2nd ‘〈0, 1〉) = 1 |
29 | 25, 28 | eqtrdi 2809 | . . . . . . . 8 ⊢ (𝜑 → (2nd ‘(𝐺‘0)) = 1) |
30 | 29 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (2nd ‘(𝐺‘0)) = 1) |
31 | 23, 30 | breqtrd 5061 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (1st ‘(𝐺‘𝑛)) < 1) |
32 | 5 | ffvelrnda 6847 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) ∈ (ℝ × ℝ)) |
33 | xp1st 7730 | . . . . . . . 8 ⊢ ((𝐺‘𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘𝑛)) ∈ ℝ) | |
34 | 32, 33 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (1st ‘(𝐺‘𝑛)) ∈ ℝ) |
35 | 1re 10684 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
36 | ltle 10772 | . . . . . . 7 ⊢ (((1st ‘(𝐺‘𝑛)) ∈ ℝ ∧ 1 ∈ ℝ) → ((1st ‘(𝐺‘𝑛)) < 1 → (1st ‘(𝐺‘𝑛)) ≤ 1)) | |
37 | 34, 35, 36 | sylancl 589 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((1st ‘(𝐺‘𝑛)) < 1 → (1st ‘(𝐺‘𝑛)) ≤ 1)) |
38 | 31, 37 | mpd 15 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (1st ‘(𝐺‘𝑛)) ≤ 1) |
39 | 18, 38 | eqbrtrd 5057 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((1st ∘ 𝐺)‘𝑛) ≤ 1) |
40 | 39 | ralrimiva 3113 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ((1st ∘ 𝐺)‘𝑛) ≤ 1) |
41 | 7 | ffnd 6503 | . . . 4 ⊢ (𝜑 → (1st ∘ 𝐺) Fn ℕ0) |
42 | breq1 5038 | . . . . 5 ⊢ (𝑧 = ((1st ∘ 𝐺)‘𝑛) → (𝑧 ≤ 1 ↔ ((1st ∘ 𝐺)‘𝑛) ≤ 1)) | |
43 | 42 | ralrn 6850 | . . . 4 ⊢ ((1st ∘ 𝐺) Fn ℕ0 → (∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1 ↔ ∀𝑛 ∈ ℕ0 ((1st ∘ 𝐺)‘𝑛) ≤ 1)) |
44 | 41, 43 | syl 17 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1 ↔ ∀𝑛 ∈ ℕ0 ((1st ∘ 𝐺)‘𝑛) ≤ 1)) |
45 | 40, 44 | mpbird 260 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1) |
46 | 8, 16, 45 | 3jca 1125 | 1 ⊢ (𝜑 → (ran (1st ∘ 𝐺) ⊆ ℝ ∧ ran (1st ∘ 𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ⦋csb 3807 ∪ cun 3858 ⊆ wss 3860 ∅c0 4227 ifcif 4423 {csn 4525 〈cop 4531 class class class wbr 5035 × cxp 5525 dom cdm 5527 ran crn 5528 ∘ ccom 5531 Fn wfn 6334 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 ∈ cmpo 7157 1st c1st 7696 2nd c2nd 7697 ℝcr 10579 0cc0 10580 1c1 10581 + caddc 10583 < clt 10718 ≤ cle 10719 / cdiv 11340 ℕcn 11679 2c2 11734 ℕ0cn0 11939 seqcseq 13423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-seq 13424 |
This theorem is referenced by: ruclem12 15647 |
Copyright terms: Public domain | W3C validator |