Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ruclem11 | Structured version Visualization version GIF version |
Description: Lemma for ruc 15880. Closure lemmas for supremum. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
Ref | Expression |
---|---|
ruclem11 | ⊢ (𝜑 → (ran (1st ∘ 𝐺) ⊆ ℝ ∧ ran (1st ∘ 𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ruc.1 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
2 | ruc.2 | . . . . 5 ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) | |
3 | ruc.4 | . . . . 5 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
4 | ruc.5 | . . . . 5 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
5 | 1, 2, 3, 4 | ruclem6 15872 | . . . 4 ⊢ (𝜑 → 𝐺:ℕ0⟶(ℝ × ℝ)) |
6 | 1stcof 7834 | . . . 4 ⊢ (𝐺:ℕ0⟶(ℝ × ℝ) → (1st ∘ 𝐺):ℕ0⟶ℝ) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → (1st ∘ 𝐺):ℕ0⟶ℝ) |
8 | 7 | frnd 6592 | . 2 ⊢ (𝜑 → ran (1st ∘ 𝐺) ⊆ ℝ) |
9 | 7 | fdmd 6595 | . . . 4 ⊢ (𝜑 → dom (1st ∘ 𝐺) = ℕ0) |
10 | 0nn0 12178 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
11 | ne0i 4265 | . . . . 5 ⊢ (0 ∈ ℕ0 → ℕ0 ≠ ∅) | |
12 | 10, 11 | mp1i 13 | . . . 4 ⊢ (𝜑 → ℕ0 ≠ ∅) |
13 | 9, 12 | eqnetrd 3010 | . . 3 ⊢ (𝜑 → dom (1st ∘ 𝐺) ≠ ∅) |
14 | dm0rn0 5823 | . . . 4 ⊢ (dom (1st ∘ 𝐺) = ∅ ↔ ran (1st ∘ 𝐺) = ∅) | |
15 | 14 | necon3bii 2995 | . . 3 ⊢ (dom (1st ∘ 𝐺) ≠ ∅ ↔ ran (1st ∘ 𝐺) ≠ ∅) |
16 | 13, 15 | sylib 217 | . 2 ⊢ (𝜑 → ran (1st ∘ 𝐺) ≠ ∅) |
17 | fvco3 6849 | . . . . . 6 ⊢ ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑛 ∈ ℕ0) → ((1st ∘ 𝐺)‘𝑛) = (1st ‘(𝐺‘𝑛))) | |
18 | 5, 17 | sylan 579 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((1st ∘ 𝐺)‘𝑛) = (1st ‘(𝐺‘𝑛))) |
19 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝐹:ℕ⟶ℝ) |
20 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
21 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0) | |
22 | 10 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 0 ∈ ℕ0) |
23 | 19, 20, 3, 4, 21, 22 | ruclem10 15876 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (1st ‘(𝐺‘𝑛)) < (2nd ‘(𝐺‘0))) |
24 | 1, 2, 3, 4 | ruclem4 15871 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐺‘0) = 〈0, 1〉) |
25 | 24 | fveq2d 6760 | . . . . . . . . 9 ⊢ (𝜑 → (2nd ‘(𝐺‘0)) = (2nd ‘〈0, 1〉)) |
26 | c0ex 10900 | . . . . . . . . . 10 ⊢ 0 ∈ V | |
27 | 1ex 10902 | . . . . . . . . . 10 ⊢ 1 ∈ V | |
28 | 26, 27 | op2nd 7813 | . . . . . . . . 9 ⊢ (2nd ‘〈0, 1〉) = 1 |
29 | 25, 28 | eqtrdi 2795 | . . . . . . . 8 ⊢ (𝜑 → (2nd ‘(𝐺‘0)) = 1) |
30 | 29 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (2nd ‘(𝐺‘0)) = 1) |
31 | 23, 30 | breqtrd 5096 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (1st ‘(𝐺‘𝑛)) < 1) |
32 | 5 | ffvelrnda 6943 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) ∈ (ℝ × ℝ)) |
33 | xp1st 7836 | . . . . . . . 8 ⊢ ((𝐺‘𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘𝑛)) ∈ ℝ) | |
34 | 32, 33 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (1st ‘(𝐺‘𝑛)) ∈ ℝ) |
35 | 1re 10906 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
36 | ltle 10994 | . . . . . . 7 ⊢ (((1st ‘(𝐺‘𝑛)) ∈ ℝ ∧ 1 ∈ ℝ) → ((1st ‘(𝐺‘𝑛)) < 1 → (1st ‘(𝐺‘𝑛)) ≤ 1)) | |
37 | 34, 35, 36 | sylancl 585 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((1st ‘(𝐺‘𝑛)) < 1 → (1st ‘(𝐺‘𝑛)) ≤ 1)) |
38 | 31, 37 | mpd 15 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (1st ‘(𝐺‘𝑛)) ≤ 1) |
39 | 18, 38 | eqbrtrd 5092 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((1st ∘ 𝐺)‘𝑛) ≤ 1) |
40 | 39 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 ((1st ∘ 𝐺)‘𝑛) ≤ 1) |
41 | 7 | ffnd 6585 | . . . 4 ⊢ (𝜑 → (1st ∘ 𝐺) Fn ℕ0) |
42 | breq1 5073 | . . . . 5 ⊢ (𝑧 = ((1st ∘ 𝐺)‘𝑛) → (𝑧 ≤ 1 ↔ ((1st ∘ 𝐺)‘𝑛) ≤ 1)) | |
43 | 42 | ralrn 6946 | . . . 4 ⊢ ((1st ∘ 𝐺) Fn ℕ0 → (∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1 ↔ ∀𝑛 ∈ ℕ0 ((1st ∘ 𝐺)‘𝑛) ≤ 1)) |
44 | 41, 43 | syl 17 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1 ↔ ∀𝑛 ∈ ℕ0 ((1st ∘ 𝐺)‘𝑛) ≤ 1)) |
45 | 40, 44 | mpbird 256 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1) |
46 | 8, 16, 45 | 3jca 1126 | 1 ⊢ (𝜑 → (ran (1st ∘ 𝐺) ⊆ ℝ ∧ ran (1st ∘ 𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ⦋csb 3828 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 ifcif 4456 {csn 4558 〈cop 4564 class class class wbr 5070 × cxp 5578 dom cdm 5580 ran crn 5581 ∘ ccom 5584 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 2nd c2nd 7803 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 / cdiv 11562 ℕcn 11903 2c2 11958 ℕ0cn0 12163 seqcseq 13649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-seq 13650 |
This theorem is referenced by: ruclem12 15878 |
Copyright terms: Public domain | W3C validator |