MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem12 Structured version   Visualization version   GIF version

Theorem ruclem12 15254
Description: Lemma for ruc 15256. The supremum of the increasing sequence 1st𝐺 is a real number that is not in the range of 𝐹. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
ruc.6 𝑆 = sup(ran (1st𝐺), ℝ, < )
Assertion
Ref Expression
ruclem12 (𝜑𝑆 ∈ (ℝ ∖ ran 𝐹))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑆(𝑥,𝑦,𝑚)

Proof of Theorem ruclem12
Dummy variables 𝑧 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruc.6 . . 3 𝑆 = sup(ran (1st𝐺), ℝ, < )
2 ruc.1 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
3 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
4 ruc.4 . . . . . 6 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
5 ruc.5 . . . . . 6 𝐺 = seq0(𝐷, 𝐶)
62, 3, 4, 5ruclem11 15253 . . . . 5 (𝜑 → (ran (1st𝐺) ⊆ ℝ ∧ ran (1st𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1))
76simp1d 1172 . . . 4 (𝜑 → ran (1st𝐺) ⊆ ℝ)
86simp2d 1173 . . . 4 (𝜑 → ran (1st𝐺) ≠ ∅)
9 1re 10293 . . . . 5 1 ∈ ℝ
106simp3d 1174 . . . . 5 (𝜑 → ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1)
11 brralrspcev 4869 . . . . 5 ((1 ∈ ℝ ∧ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1) → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛)
129, 10, 11sylancr 581 . . . 4 (𝜑 → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛)
13 suprcl 11237 . . . 4 ((ran (1st𝐺) ⊆ ℝ ∧ ran (1st𝐺) ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛) → sup(ran (1st𝐺), ℝ, < ) ∈ ℝ)
147, 8, 12, 13syl3anc 1490 . . 3 (𝜑 → sup(ran (1st𝐺), ℝ, < ) ∈ ℝ)
151, 14syl5eqel 2848 . 2 (𝜑𝑆 ∈ ℝ)
162adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
173adantr 472 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
182, 3, 4, 5ruclem6 15248 . . . . . . . . . . 11 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
19 nnm1nn0 11581 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
20 ffvelrn 6547 . . . . . . . . . . 11 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ (𝑛 − 1) ∈ ℕ0) → (𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ))
2118, 19, 20syl2an 589 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ))
22 xp1st 7398 . . . . . . . . . 10 ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
2321, 22syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
24 xp2nd 7399 . . . . . . . . . 10 ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
2521, 24syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
262ffvelrnda 6549 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
27 eqid 2765 . . . . . . . . 9 (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) = (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
28 eqid 2765 . . . . . . . . 9 (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) = (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
292, 3, 4, 5ruclem8 15250 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 − 1) ∈ ℕ0) → (1st ‘(𝐺‘(𝑛 − 1))) < (2nd ‘(𝐺‘(𝑛 − 1))))
3019, 29sylan2 586 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺‘(𝑛 − 1))) < (2nd ‘(𝐺‘(𝑛 − 1))))
3116, 17, 23, 25, 26, 27, 28, 30ruclem3 15246 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) ∨ (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) < (𝐹𝑛)))
322, 3, 4, 5ruclem7 15249 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 − 1) ∈ ℕ0) → (𝐺‘((𝑛 − 1) + 1)) = ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))))
3319, 32sylan2 586 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐺‘((𝑛 − 1) + 1)) = ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))))
34 nncn 11283 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3534adantl 473 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
36 ax-1cn 10247 . . . . . . . . . . . . . 14 1 ∈ ℂ
37 npcan 10544 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
3835, 36, 37sylancl 580 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((𝑛 − 1) + 1) = 𝑛)
3938fveq2d 6379 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐺‘((𝑛 − 1) + 1)) = (𝐺𝑛))
40 1st2nd2 7405 . . . . . . . . . . . . . 14 ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ) → (𝐺‘(𝑛 − 1)) = ⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩)
4121, 40syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐺‘(𝑛 − 1)) = ⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩)
4238fveq2d 6379 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹‘((𝑛 − 1) + 1)) = (𝐹𝑛))
4341, 42oveq12d 6860 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))) = (⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
4433, 39, 433eqtr3d 2807 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = (⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
4544fveq2d 6379 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))))
4645breq2d 4821 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(𝐺𝑛)) ↔ (𝐹𝑛) < (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))))
4744fveq2d 6379 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))))
4847breq1d 4819 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) < (𝐹𝑛) ↔ (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) < (𝐹𝑛)))
4946, 48orbi12d 942 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∨ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) ↔ ((𝐹𝑛) < (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) ∨ (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) < (𝐹𝑛))))
5031, 49mpbird 248 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∨ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)))
517adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (1st𝐺) ⊆ ℝ)
528adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (1st𝐺) ≠ ∅)
5312adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛)
54 nnnn0 11546 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
55 fvco3 6464 . . . . . . . . . . . . 13 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑛 ∈ ℕ0) → ((1st𝐺)‘𝑛) = (1st ‘(𝐺𝑛)))
5618, 54, 55syl2an 589 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st𝐺)‘𝑛) = (1st ‘(𝐺𝑛)))
5718adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐺:ℕ0⟶(ℝ × ℝ))
58 1stcof 7396 . . . . . . . . . . . . . 14 (𝐺:ℕ0⟶(ℝ × ℝ) → (1st𝐺):ℕ0⟶ℝ)
59 ffn 6223 . . . . . . . . . . . . . 14 ((1st𝐺):ℕ0⟶ℝ → (1st𝐺) Fn ℕ0)
6057, 58, 593syl 18 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1st𝐺) Fn ℕ0)
6154adantl 473 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
62 fnfvelrn 6546 . . . . . . . . . . . . 13 (((1st𝐺) Fn ℕ0𝑛 ∈ ℕ0) → ((1st𝐺)‘𝑛) ∈ ran (1st𝐺))
6360, 61, 62syl2anc 579 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st𝐺)‘𝑛) ∈ ran (1st𝐺))
6456, 63eqeltrrd 2845 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ∈ ran (1st𝐺))
65 suprub 11238 . . . . . . . . . . 11 (((ran (1st𝐺) ⊆ ℝ ∧ ran (1st𝐺) ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛) ∧ (1st ‘(𝐺𝑛)) ∈ ran (1st𝐺)) → (1st ‘(𝐺𝑛)) ≤ sup(ran (1st𝐺), ℝ, < ))
6651, 52, 53, 64, 65syl31anc 1492 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ≤ sup(ran (1st𝐺), ℝ, < ))
6766, 1syl6breqr 4851 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ≤ 𝑆)
68 ffvelrn 6547 . . . . . . . . . . . 12 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ (ℝ × ℝ))
6918, 54, 68syl2an 589 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ (ℝ × ℝ))
70 xp1st 7398 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
7169, 70syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
7215adantr 472 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑆 ∈ ℝ)
73 ltletr 10383 . . . . . . . . . 10 (((𝐹𝑛) ∈ ℝ ∧ (1st ‘(𝐺𝑛)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ 𝑆) → (𝐹𝑛) < 𝑆))
7426, 71, 72, 73syl3anc 1490 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ 𝑆) → (𝐹𝑛) < 𝑆))
7567, 74mpan2d 685 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(𝐺𝑛)) → (𝐹𝑛) < 𝑆))
76 fvco3 6464 . . . . . . . . . . . . . . 15 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑘 ∈ ℕ0) → ((1st𝐺)‘𝑘) = (1st ‘(𝐺𝑘)))
7757, 76sylan 575 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((1st𝐺)‘𝑘) = (1st ‘(𝐺𝑘)))
7857ffvelrnda 6549 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ (ℝ × ℝ))
79 xp1st 7398 . . . . . . . . . . . . . . . 16 ((𝐺𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑘)) ∈ ℝ)
8078, 79syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (1st ‘(𝐺𝑘)) ∈ ℝ)
81 xp2nd 7399 . . . . . . . . . . . . . . . . 17 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
8269, 81syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
8382adantr 472 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
8416adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐹:ℕ⟶ℝ)
8517adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
86 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8761adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈ ℕ0)
8884, 85, 4, 5, 86, 87ruclem10 15252 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑛)))
8980, 83, 88ltled 10439 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (1st ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑛)))
9077, 89eqbrtrd 4831 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛)))
9190ralrimiva 3113 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ0 ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛)))
92 breq1 4812 . . . . . . . . . . . . . 14 (𝑧 = ((1st𝐺)‘𝑘) → (𝑧 ≤ (2nd ‘(𝐺𝑛)) ↔ ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛))))
9392ralrn 6552 . . . . . . . . . . . . 13 ((1st𝐺) Fn ℕ0 → (∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑘 ∈ ℕ0 ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛))))
9460, 93syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑘 ∈ ℕ0 ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛))))
9591, 94mpbird 248 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛)))
96 suprleub 11243 . . . . . . . . . . . 12 (((ran (1st𝐺) ⊆ ℝ ∧ ran (1st𝐺) ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛) ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ) → (sup(ran (1st𝐺), ℝ, < ) ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛))))
9751, 52, 53, 82, 96syl31anc 1492 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (sup(ran (1st𝐺), ℝ, < ) ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛))))
9895, 97mpbird 248 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → sup(ran (1st𝐺), ℝ, < ) ≤ (2nd ‘(𝐺𝑛)))
991, 98syl5eqbr 4844 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑆 ≤ (2nd ‘(𝐺𝑛)))
100 lelttr 10382 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ ∧ (𝐹𝑛) ∈ ℝ) → ((𝑆 ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) → 𝑆 < (𝐹𝑛)))
10172, 82, 26, 100syl3anc 1490 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑆 ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) → 𝑆 < (𝐹𝑛)))
10299, 101mpand 686 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) < (𝐹𝑛) → 𝑆 < (𝐹𝑛)))
10375, 102orim12d 987 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∨ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) → ((𝐹𝑛) < 𝑆𝑆 < (𝐹𝑛))))
10450, 103mpd 15 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < 𝑆𝑆 < (𝐹𝑛)))
10526, 72lttri2d 10430 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ≠ 𝑆 ↔ ((𝐹𝑛) < 𝑆𝑆 < (𝐹𝑛))))
106104, 105mpbird 248 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ≠ 𝑆)
107106neneqd 2942 . . . 4 ((𝜑𝑛 ∈ ℕ) → ¬ (𝐹𝑛) = 𝑆)
108107nrexdv 3147 . . 3 (𝜑 → ¬ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆)
109 risset 3209 . . . 4 (𝑆 ∈ ran 𝐹 ↔ ∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆)
110 ffn 6223 . . . . 5 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
111 eqeq1 2769 . . . . . 6 (𝑧 = (𝐹𝑛) → (𝑧 = 𝑆 ↔ (𝐹𝑛) = 𝑆))
112111rexrn 6551 . . . . 5 (𝐹 Fn ℕ → (∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆 ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆))
1132, 110, 1123syl 18 . . . 4 (𝜑 → (∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆 ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆))
114109, 113syl5bb 274 . . 3 (𝜑 → (𝑆 ∈ ran 𝐹 ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆))
115108, 114mtbird 316 . 2 (𝜑 → ¬ 𝑆 ∈ ran 𝐹)
11615, 115eldifd 3743 1 (𝜑𝑆 ∈ (ℝ ∖ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  csb 3691  cdif 3729  cun 3730  wss 3732  c0 4079  ifcif 4243  {csn 4334  cop 4340   class class class wbr 4809   × cxp 5275  ran crn 5278  ccom 5281   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  cmpt2 6844  1st c1st 7364  2nd c2nd 7365  supcsup 8553  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   < clt 10328  cle 10329  cmin 10520   / cdiv 10938  cn 11274  2c2 11327  0cn0 11538  seqcseq 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-seq 13009
This theorem is referenced by:  ruclem13  15255
  Copyright terms: Public domain W3C validator