MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem12 Structured version   Visualization version   GIF version

Theorem ruclem12 15878
Description: Lemma for ruc 15880. The supremum of the increasing sequence 1st𝐺 is a real number that is not in the range of 𝐹. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
ruc.6 𝑆 = sup(ran (1st𝐺), ℝ, < )
Assertion
Ref Expression
ruclem12 (𝜑𝑆 ∈ (ℝ ∖ ran 𝐹))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑆(𝑥,𝑦,𝑚)

Proof of Theorem ruclem12
Dummy variables 𝑧 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruc.6 . . 3 𝑆 = sup(ran (1st𝐺), ℝ, < )
2 ruc.1 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
3 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
4 ruc.4 . . . . . 6 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
5 ruc.5 . . . . . 6 𝐺 = seq0(𝐷, 𝐶)
62, 3, 4, 5ruclem11 15877 . . . . 5 (𝜑 → (ran (1st𝐺) ⊆ ℝ ∧ ran (1st𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1))
76simp1d 1140 . . . 4 (𝜑 → ran (1st𝐺) ⊆ ℝ)
86simp2d 1141 . . . 4 (𝜑 → ran (1st𝐺) ≠ ∅)
9 1re 10906 . . . . 5 1 ∈ ℝ
106simp3d 1142 . . . . 5 (𝜑 → ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1)
11 brralrspcev 5130 . . . . 5 ((1 ∈ ℝ ∧ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1) → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛)
129, 10, 11sylancr 586 . . . 4 (𝜑 → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛)
137, 8, 12suprcld 11868 . . 3 (𝜑 → sup(ran (1st𝐺), ℝ, < ) ∈ ℝ)
141, 13eqeltrid 2843 . 2 (𝜑𝑆 ∈ ℝ)
152adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
163adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
172, 3, 4, 5ruclem6 15872 . . . . . . . . . . 11 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
18 nnm1nn0 12204 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
19 ffvelrn 6941 . . . . . . . . . . 11 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ (𝑛 − 1) ∈ ℕ0) → (𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ))
2017, 18, 19syl2an 595 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ))
21 xp1st 7836 . . . . . . . . . 10 ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
2220, 21syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
23 xp2nd 7837 . . . . . . . . . 10 ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
2420, 23syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
252ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
26 eqid 2738 . . . . . . . . 9 (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) = (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
27 eqid 2738 . . . . . . . . 9 (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) = (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
282, 3, 4, 5ruclem8 15874 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 − 1) ∈ ℕ0) → (1st ‘(𝐺‘(𝑛 − 1))) < (2nd ‘(𝐺‘(𝑛 − 1))))
2918, 28sylan2 592 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺‘(𝑛 − 1))) < (2nd ‘(𝐺‘(𝑛 − 1))))
3015, 16, 22, 24, 25, 26, 27, 29ruclem3 15870 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) ∨ (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) < (𝐹𝑛)))
312, 3, 4, 5ruclem7 15873 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 − 1) ∈ ℕ0) → (𝐺‘((𝑛 − 1) + 1)) = ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))))
3218, 31sylan2 592 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐺‘((𝑛 − 1) + 1)) = ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))))
33 nncn 11911 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3433adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
35 ax-1cn 10860 . . . . . . . . . . . . . 14 1 ∈ ℂ
36 npcan 11160 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
3734, 35, 36sylancl 585 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((𝑛 − 1) + 1) = 𝑛)
3837fveq2d 6760 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐺‘((𝑛 − 1) + 1)) = (𝐺𝑛))
39 1st2nd2 7843 . . . . . . . . . . . . . 14 ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ) → (𝐺‘(𝑛 − 1)) = ⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩)
4020, 39syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐺‘(𝑛 − 1)) = ⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩)
4137fveq2d 6760 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹‘((𝑛 − 1) + 1)) = (𝐹𝑛))
4240, 41oveq12d 7273 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))) = (⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
4332, 38, 423eqtr3d 2786 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = (⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
4443fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))))
4544breq2d 5082 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(𝐺𝑛)) ↔ (𝐹𝑛) < (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))))
4643fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))))
4746breq1d 5080 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) < (𝐹𝑛) ↔ (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) < (𝐹𝑛)))
4845, 47orbi12d 915 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∨ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) ↔ ((𝐹𝑛) < (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) ∨ (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) < (𝐹𝑛))))
4930, 48mpbird 256 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∨ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)))
507adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (1st𝐺) ⊆ ℝ)
518adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (1st𝐺) ≠ ∅)
5212adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛)
53 nnnn0 12170 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
54 fvco3 6849 . . . . . . . . . . . . 13 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑛 ∈ ℕ0) → ((1st𝐺)‘𝑛) = (1st ‘(𝐺𝑛)))
5517, 53, 54syl2an 595 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st𝐺)‘𝑛) = (1st ‘(𝐺𝑛)))
5617adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐺:ℕ0⟶(ℝ × ℝ))
57 1stcof 7834 . . . . . . . . . . . . . 14 (𝐺:ℕ0⟶(ℝ × ℝ) → (1st𝐺):ℕ0⟶ℝ)
58 ffn 6584 . . . . . . . . . . . . . 14 ((1st𝐺):ℕ0⟶ℝ → (1st𝐺) Fn ℕ0)
5956, 57, 583syl 18 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1st𝐺) Fn ℕ0)
6053adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
61 fnfvelrn 6940 . . . . . . . . . . . . 13 (((1st𝐺) Fn ℕ0𝑛 ∈ ℕ0) → ((1st𝐺)‘𝑛) ∈ ran (1st𝐺))
6259, 60, 61syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st𝐺)‘𝑛) ∈ ran (1st𝐺))
6355, 62eqeltrrd 2840 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ∈ ran (1st𝐺))
6450, 51, 52, 63suprubd 11867 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ≤ sup(ran (1st𝐺), ℝ, < ))
6564, 1breqtrrdi 5112 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ≤ 𝑆)
66 ffvelrn 6941 . . . . . . . . . . . 12 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ (ℝ × ℝ))
6717, 53, 66syl2an 595 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ (ℝ × ℝ))
68 xp1st 7836 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
6967, 68syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
7014adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑆 ∈ ℝ)
71 ltletr 10997 . . . . . . . . . 10 (((𝐹𝑛) ∈ ℝ ∧ (1st ‘(𝐺𝑛)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ 𝑆) → (𝐹𝑛) < 𝑆))
7225, 69, 70, 71syl3anc 1369 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ 𝑆) → (𝐹𝑛) < 𝑆))
7365, 72mpan2d 690 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(𝐺𝑛)) → (𝐹𝑛) < 𝑆))
74 fvco3 6849 . . . . . . . . . . . . . . 15 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑘 ∈ ℕ0) → ((1st𝐺)‘𝑘) = (1st ‘(𝐺𝑘)))
7556, 74sylan 579 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((1st𝐺)‘𝑘) = (1st ‘(𝐺𝑘)))
7656ffvelrnda 6943 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ (ℝ × ℝ))
77 xp1st 7836 . . . . . . . . . . . . . . . 16 ((𝐺𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑘)) ∈ ℝ)
7876, 77syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (1st ‘(𝐺𝑘)) ∈ ℝ)
79 xp2nd 7837 . . . . . . . . . . . . . . . . 17 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
8067, 79syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
8180adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
8215adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐹:ℕ⟶ℝ)
8316adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
84 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8560adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈ ℕ0)
8682, 83, 4, 5, 84, 85ruclem10 15876 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑛)))
8778, 81, 86ltled 11053 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (1st ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑛)))
8875, 87eqbrtrd 5092 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛)))
8988ralrimiva 3107 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ0 ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛)))
90 breq1 5073 . . . . . . . . . . . . . 14 (𝑧 = ((1st𝐺)‘𝑘) → (𝑧 ≤ (2nd ‘(𝐺𝑛)) ↔ ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛))))
9190ralrn 6946 . . . . . . . . . . . . 13 ((1st𝐺) Fn ℕ0 → (∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑘 ∈ ℕ0 ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛))))
9259, 91syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑘 ∈ ℕ0 ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛))))
9389, 92mpbird 256 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛)))
94 suprleub 11871 . . . . . . . . . . . 12 (((ran (1st𝐺) ⊆ ℝ ∧ ran (1st𝐺) ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛) ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ) → (sup(ran (1st𝐺), ℝ, < ) ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛))))
9550, 51, 52, 80, 94syl31anc 1371 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (sup(ran (1st𝐺), ℝ, < ) ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛))))
9693, 95mpbird 256 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → sup(ran (1st𝐺), ℝ, < ) ≤ (2nd ‘(𝐺𝑛)))
971, 96eqbrtrid 5105 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑆 ≤ (2nd ‘(𝐺𝑛)))
98 lelttr 10996 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ ∧ (𝐹𝑛) ∈ ℝ) → ((𝑆 ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) → 𝑆 < (𝐹𝑛)))
9970, 80, 25, 98syl3anc 1369 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑆 ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) → 𝑆 < (𝐹𝑛)))
10097, 99mpand 691 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) < (𝐹𝑛) → 𝑆 < (𝐹𝑛)))
10173, 100orim12d 961 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∨ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) → ((𝐹𝑛) < 𝑆𝑆 < (𝐹𝑛))))
10249, 101mpd 15 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < 𝑆𝑆 < (𝐹𝑛)))
10325, 70lttri2d 11044 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ≠ 𝑆 ↔ ((𝐹𝑛) < 𝑆𝑆 < (𝐹𝑛))))
104102, 103mpbird 256 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ≠ 𝑆)
105104neneqd 2947 . . . 4 ((𝜑𝑛 ∈ ℕ) → ¬ (𝐹𝑛) = 𝑆)
106105nrexdv 3197 . . 3 (𝜑 → ¬ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆)
107 risset 3193 . . . 4 (𝑆 ∈ ran 𝐹 ↔ ∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆)
108 ffn 6584 . . . . 5 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
109 eqeq1 2742 . . . . . 6 (𝑧 = (𝐹𝑛) → (𝑧 = 𝑆 ↔ (𝐹𝑛) = 𝑆))
110109rexrn 6945 . . . . 5 (𝐹 Fn ℕ → (∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆 ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆))
1112, 108, 1103syl 18 . . . 4 (𝜑 → (∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆 ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆))
112107, 111syl5bb 282 . . 3 (𝜑 → (𝑆 ∈ ran 𝐹 ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆))
113106, 112mtbird 324 . 2 (𝜑 → ¬ 𝑆 ∈ ran 𝐹)
11414, 113eldifd 3894 1 (𝜑𝑆 ∈ (ℝ ∖ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  csb 3828  cdif 3880  cun 3881  wss 3883  c0 4253  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070   × cxp 5578  ran crn 5581  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  seqcseq 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650
This theorem is referenced by:  ruclem13  15879
  Copyright terms: Public domain W3C validator