MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem12 Structured version   Visualization version   GIF version

Theorem ruclem12 16185
Description: Lemma for ruc 16187. The supremum of the increasing sequence 1st𝐺 is a real number that is not in the range of 𝐹. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
ruc.6 𝑆 = sup(ran (1st𝐺), ℝ, < )
Assertion
Ref Expression
ruclem12 (𝜑𝑆 ∈ (ℝ ∖ ran 𝐹))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑆(𝑥,𝑦,𝑚)

Proof of Theorem ruclem12
Dummy variables 𝑧 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruc.6 . . 3 𝑆 = sup(ran (1st𝐺), ℝ, < )
2 ruc.1 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
3 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
4 ruc.4 . . . . . 6 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
5 ruc.5 . . . . . 6 𝐺 = seq0(𝐷, 𝐶)
62, 3, 4, 5ruclem11 16184 . . . . 5 (𝜑 → (ran (1st𝐺) ⊆ ℝ ∧ ran (1st𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1))
76simp1d 1142 . . . 4 (𝜑 → ran (1st𝐺) ⊆ ℝ)
86simp2d 1143 . . . 4 (𝜑 → ran (1st𝐺) ≠ ∅)
9 1re 11150 . . . . 5 1 ∈ ℝ
106simp3d 1144 . . . . 5 (𝜑 → ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1)
11 brralrspcev 5162 . . . . 5 ((1 ∈ ℝ ∧ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ 1) → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛)
129, 10, 11sylancr 587 . . . 4 (𝜑 → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛)
137, 8, 12suprcld 12122 . . 3 (𝜑 → sup(ran (1st𝐺), ℝ, < ) ∈ ℝ)
141, 13eqeltrid 2832 . 2 (𝜑𝑆 ∈ ℝ)
152adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
163adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
172, 3, 4, 5ruclem6 16179 . . . . . . . . . . 11 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
18 nnm1nn0 12459 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
19 ffvelcdm 7035 . . . . . . . . . . 11 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ (𝑛 − 1) ∈ ℕ0) → (𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ))
2017, 18, 19syl2an 596 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ))
21 xp1st 7979 . . . . . . . . . 10 ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ) → (1st ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
2220, 21syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
23 xp2nd 7980 . . . . . . . . . 10 ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ) → (2nd ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
2420, 23syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺‘(𝑛 − 1))) ∈ ℝ)
252ffvelcdmda 7038 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
26 eqid 2729 . . . . . . . . 9 (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) = (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
27 eqid 2729 . . . . . . . . 9 (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) = (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
282, 3, 4, 5ruclem8 16181 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 − 1) ∈ ℕ0) → (1st ‘(𝐺‘(𝑛 − 1))) < (2nd ‘(𝐺‘(𝑛 − 1))))
2918, 28sylan2 593 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺‘(𝑛 − 1))) < (2nd ‘(𝐺‘(𝑛 − 1))))
3015, 16, 22, 24, 25, 26, 27, 29ruclem3 16177 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) ∨ (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) < (𝐹𝑛)))
312, 3, 4, 5ruclem7 16180 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 − 1) ∈ ℕ0) → (𝐺‘((𝑛 − 1) + 1)) = ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))))
3218, 31sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐺‘((𝑛 − 1) + 1)) = ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))))
33 nncn 12170 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3433adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
35 ax-1cn 11102 . . . . . . . . . . . . . 14 1 ∈ ℂ
36 npcan 11406 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
3734, 35, 36sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((𝑛 − 1) + 1) = 𝑛)
3837fveq2d 6844 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐺‘((𝑛 − 1) + 1)) = (𝐺𝑛))
39 1st2nd2 7986 . . . . . . . . . . . . . 14 ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ) → (𝐺‘(𝑛 − 1)) = ⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩)
4020, 39syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐺‘(𝑛 − 1)) = ⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩)
4137fveq2d 6844 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹‘((𝑛 − 1) + 1)) = (𝐹𝑛))
4240, 41oveq12d 7387 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))) = (⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
4332, 38, 423eqtr3d 2772 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = (⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))
4443fveq2d 6844 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))))
4544breq2d 5114 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(𝐺𝑛)) ↔ (𝐹𝑛) < (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛)))))
4643fveq2d 6844 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))))
4746breq1d 5112 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) < (𝐹𝑛) ↔ (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) < (𝐹𝑛)))
4845, 47orbi12d 918 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∨ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) ↔ ((𝐹𝑛) < (1st ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) ∨ (2nd ‘(⟨(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))⟩𝐷(𝐹𝑛))) < (𝐹𝑛))))
4930, 48mpbird 257 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∨ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)))
507adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (1st𝐺) ⊆ ℝ)
518adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (1st𝐺) ≠ ∅)
5212adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛)
53 nnnn0 12425 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
54 fvco3 6942 . . . . . . . . . . . . 13 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑛 ∈ ℕ0) → ((1st𝐺)‘𝑛) = (1st ‘(𝐺𝑛)))
5517, 53, 54syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st𝐺)‘𝑛) = (1st ‘(𝐺𝑛)))
5617adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐺:ℕ0⟶(ℝ × ℝ))
57 1stcof 7977 . . . . . . . . . . . . . 14 (𝐺:ℕ0⟶(ℝ × ℝ) → (1st𝐺):ℕ0⟶ℝ)
58 ffn 6670 . . . . . . . . . . . . . 14 ((1st𝐺):ℕ0⟶ℝ → (1st𝐺) Fn ℕ0)
5956, 57, 583syl 18 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1st𝐺) Fn ℕ0)
6053adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
61 fnfvelrn 7034 . . . . . . . . . . . . 13 (((1st𝐺) Fn ℕ0𝑛 ∈ ℕ0) → ((1st𝐺)‘𝑛) ∈ ran (1st𝐺))
6259, 60, 61syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((1st𝐺)‘𝑛) ∈ ran (1st𝐺))
6355, 62eqeltrrd 2829 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ∈ ran (1st𝐺))
6450, 51, 52, 63suprubd 12121 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ≤ sup(ran (1st𝐺), ℝ, < ))
6564, 1breqtrrdi 5144 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ≤ 𝑆)
66 ffvelcdm 7035 . . . . . . . . . . . 12 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ (ℝ × ℝ))
6717, 53, 66syl2an 596 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ (ℝ × ℝ))
68 xp1st 7979 . . . . . . . . . . 11 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
6967, 68syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
7014adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑆 ∈ ℝ)
71 ltletr 11242 . . . . . . . . . 10 (((𝐹𝑛) ∈ ℝ ∧ (1st ‘(𝐺𝑛)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ 𝑆) → (𝐹𝑛) < 𝑆))
7225, 69, 70, 71syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∧ (1st ‘(𝐺𝑛)) ≤ 𝑆) → (𝐹𝑛) < 𝑆))
7365, 72mpan2d 694 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < (1st ‘(𝐺𝑛)) → (𝐹𝑛) < 𝑆))
74 fvco3 6942 . . . . . . . . . . . . . . 15 ((𝐺:ℕ0⟶(ℝ × ℝ) ∧ 𝑘 ∈ ℕ0) → ((1st𝐺)‘𝑘) = (1st ‘(𝐺𝑘)))
7556, 74sylan 580 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((1st𝐺)‘𝑘) = (1st ‘(𝐺𝑘)))
7656ffvelcdmda 7038 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ (ℝ × ℝ))
77 xp1st 7979 . . . . . . . . . . . . . . . 16 ((𝐺𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑘)) ∈ ℝ)
7876, 77syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (1st ‘(𝐺𝑘)) ∈ ℝ)
79 xp2nd 7980 . . . . . . . . . . . . . . . . 17 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
8067, 79syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
8180adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
8215adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐹:ℕ⟶ℝ)
8316adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
84 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8560adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈ ℕ0)
8682, 83, 4, 5, 84, 85ruclem10 16183 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (1st ‘(𝐺𝑘)) < (2nd ‘(𝐺𝑛)))
8778, 81, 86ltled 11298 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (1st ‘(𝐺𝑘)) ≤ (2nd ‘(𝐺𝑛)))
8875, 87eqbrtrd 5124 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛)))
8988ralrimiva 3125 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ0 ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛)))
90 breq1 5105 . . . . . . . . . . . . . 14 (𝑧 = ((1st𝐺)‘𝑘) → (𝑧 ≤ (2nd ‘(𝐺𝑛)) ↔ ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛))))
9190ralrn 7042 . . . . . . . . . . . . 13 ((1st𝐺) Fn ℕ0 → (∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑘 ∈ ℕ0 ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛))))
9259, 91syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑘 ∈ ℕ0 ((1st𝐺)‘𝑘) ≤ (2nd ‘(𝐺𝑛))))
9389, 92mpbird 257 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛)))
94 suprleub 12125 . . . . . . . . . . . 12 (((ran (1st𝐺) ⊆ ℝ ∧ ran (1st𝐺) ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st𝐺)𝑧𝑛) ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ) → (sup(ran (1st𝐺), ℝ, < ) ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛))))
9550, 51, 52, 80, 94syl31anc 1375 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (sup(ran (1st𝐺), ℝ, < ) ≤ (2nd ‘(𝐺𝑛)) ↔ ∀𝑧 ∈ ran (1st𝐺)𝑧 ≤ (2nd ‘(𝐺𝑛))))
9693, 95mpbird 257 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → sup(ran (1st𝐺), ℝ, < ) ≤ (2nd ‘(𝐺𝑛)))
971, 96eqbrtrid 5137 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑆 ≤ (2nd ‘(𝐺𝑛)))
98 lelttr 11240 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ ∧ (𝐹𝑛) ∈ ℝ) → ((𝑆 ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) → 𝑆 < (𝐹𝑛)))
9970, 80, 25, 98syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑆 ≤ (2nd ‘(𝐺𝑛)) ∧ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) → 𝑆 < (𝐹𝑛)))
10097, 99mpand 695 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((2nd ‘(𝐺𝑛)) < (𝐹𝑛) → 𝑆 < (𝐹𝑛)))
10173, 100orim12d 966 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝐹𝑛) < (1st ‘(𝐺𝑛)) ∨ (2nd ‘(𝐺𝑛)) < (𝐹𝑛)) → ((𝐹𝑛) < 𝑆𝑆 < (𝐹𝑛))))
10249, 101mpd 15 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) < 𝑆𝑆 < (𝐹𝑛)))
10325, 70lttri2d 11289 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ≠ 𝑆 ↔ ((𝐹𝑛) < 𝑆𝑆 < (𝐹𝑛))))
104102, 103mpbird 257 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ≠ 𝑆)
105104neneqd 2930 . . . 4 ((𝜑𝑛 ∈ ℕ) → ¬ (𝐹𝑛) = 𝑆)
106105nrexdv 3128 . . 3 (𝜑 → ¬ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆)
107 risset 3210 . . . 4 (𝑆 ∈ ran 𝐹 ↔ ∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆)
108 ffn 6670 . . . . 5 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
109 eqeq1 2733 . . . . . 6 (𝑧 = (𝐹𝑛) → (𝑧 = 𝑆 ↔ (𝐹𝑛) = 𝑆))
110109rexrn 7041 . . . . 5 (𝐹 Fn ℕ → (∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆 ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆))
1112, 108, 1103syl 18 . . . 4 (𝜑 → (∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆 ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆))
112107, 111bitrid 283 . . 3 (𝜑 → (𝑆 ∈ ran 𝐹 ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) = 𝑆))
113106, 112mtbird 325 . 2 (𝜑 → ¬ 𝑆 ∈ ran 𝐹)
11414, 113eldifd 3922 1 (𝜑𝑆 ∈ (ℝ ∖ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  csb 3859  cdif 3908  cun 3909  wss 3911  c0 4292  ifcif 4484  {csn 4585  cop 4591   class class class wbr 5102   × cxp 5629  ran crn 5632  ccom 5635   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  seqcseq 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943
This theorem is referenced by:  ruclem13  16186
  Copyright terms: Public domain W3C validator