Step | Hyp | Ref
| Expression |
1 | | ruc.6 |
. . 3
⊢ 𝑆 = sup(ran (1st
∘ 𝐺), ℝ, <
) |
2 | | ruc.1 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
3 | | ruc.2 |
. . . . . 6
⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦
⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
4 | | ruc.4 |
. . . . . 6
⊢ 𝐶 = ({〈0, 〈0,
1〉〉} ∪ 𝐹) |
5 | | ruc.5 |
. . . . . 6
⊢ 𝐺 = seq0(𝐷, 𝐶) |
6 | 2, 3, 4, 5 | ruclem11 15877 |
. . . . 5
⊢ (𝜑 → (ran (1st
∘ 𝐺) ⊆ ℝ
∧ ran (1st ∘ 𝐺) ≠ ∅ ∧ ∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ 1)) |
7 | 6 | simp1d 1140 |
. . . 4
⊢ (𝜑 → ran (1st
∘ 𝐺) ⊆
ℝ) |
8 | 6 | simp2d 1141 |
. . . 4
⊢ (𝜑 → ran (1st
∘ 𝐺) ≠
∅) |
9 | | 1re 10906 |
. . . . 5
⊢ 1 ∈
ℝ |
10 | 6 | simp3d 1142 |
. . . . 5
⊢ (𝜑 → ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1) |
11 | | brralrspcev 5130 |
. . . . 5
⊢ ((1
∈ ℝ ∧ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 1) → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 𝑛) |
12 | 9, 10, 11 | sylancr 586 |
. . . 4
⊢ (𝜑 → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ 𝑛) |
13 | 7, 8, 12 | suprcld 11868 |
. . 3
⊢ (𝜑 → sup(ran (1st
∘ 𝐺), ℝ, < )
∈ ℝ) |
14 | 1, 13 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝑆 ∈ ℝ) |
15 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℕ⟶ℝ) |
16 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦
⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
17 | 2, 3, 4, 5 | ruclem6 15872 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:ℕ0⟶(ℝ ×
ℝ)) |
18 | | nnm1nn0 12204 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
19 | | ffvelrn 6941 |
. . . . . . . . . . 11
⊢ ((𝐺:ℕ0⟶(ℝ ×
ℝ) ∧ (𝑛 −
1) ∈ ℕ0) → (𝐺‘(𝑛 − 1)) ∈ (ℝ ×
ℝ)) |
20 | 17, 18, 19 | syl2an 595 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘(𝑛 − 1)) ∈ (ℝ ×
ℝ)) |
21 | | xp1st 7836 |
. . . . . . . . . 10
⊢ ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ)
→ (1st ‘(𝐺‘(𝑛 − 1))) ∈
ℝ) |
22 | 20, 21 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘(𝑛 − 1))) ∈
ℝ) |
23 | | xp2nd 7837 |
. . . . . . . . . 10
⊢ ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ)
→ (2nd ‘(𝐺‘(𝑛 − 1))) ∈
ℝ) |
24 | 20, 23 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘(𝑛 − 1))) ∈
ℝ) |
25 | 2 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℝ) |
26 | | eqid 2738 |
. . . . . . . . 9
⊢
(1st ‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) = (1st
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) |
27 | | eqid 2738 |
. . . . . . . . 9
⊢
(2nd ‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) = (2nd
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) |
28 | 2, 3, 4, 5 | ruclem8 15874 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 − 1) ∈ ℕ0)
→ (1st ‘(𝐺‘(𝑛 − 1))) < (2nd
‘(𝐺‘(𝑛 − 1)))) |
29 | 18, 28 | sylan2 592 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘(𝑛 − 1))) <
(2nd ‘(𝐺‘(𝑛 − 1)))) |
30 | 15, 16, 22, 24, 25, 26, 27, 29 | ruclem3 15870 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) < (1st
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) ∨ (2nd
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) < (𝐹‘𝑛))) |
31 | 2, 3, 4, 5 | ruclem7 15873 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 − 1) ∈ ℕ0)
→ (𝐺‘((𝑛 − 1) + 1)) = ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1)))) |
32 | 18, 31 | sylan2 592 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘((𝑛 − 1) + 1)) = ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1)))) |
33 | | nncn 11911 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
34 | 33 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
35 | | ax-1cn 10860 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
36 | | npcan 11160 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 −
1) + 1) = 𝑛) |
37 | 34, 35, 36 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 − 1) + 1) = 𝑛) |
38 | 37 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘((𝑛 − 1) + 1)) = (𝐺‘𝑛)) |
39 | | 1st2nd2 7843 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘(𝑛 − 1)) ∈ (ℝ × ℝ)
→ (𝐺‘(𝑛 − 1)) =
〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉) |
40 | 20, 39 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘(𝑛 − 1)) = 〈(1st
‘(𝐺‘(𝑛 − 1))), (2nd
‘(𝐺‘(𝑛 −
1)))〉) |
41 | 37 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘((𝑛 − 1) + 1)) = (𝐹‘𝑛)) |
42 | 40, 41 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐺‘(𝑛 − 1))𝐷(𝐹‘((𝑛 − 1) + 1))) = (〈(1st
‘(𝐺‘(𝑛 − 1))), (2nd
‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) |
43 | 32, 38, 42 | 3eqtr3d 2786 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = (〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) |
44 | 43 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) = (1st
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛)))) |
45 | 44 | breq2d 5082 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) ↔ (𝐹‘𝑛) < (1st
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))))) |
46 | 43 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) = (2nd
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛)))) |
47 | 46 | breq1d 5080 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐺‘𝑛)) < (𝐹‘𝑛) ↔ (2nd
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) < (𝐹‘𝑛))) |
48 | 45, 47 | orbi12d 915 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) ∨ (2nd ‘(𝐺‘𝑛)) < (𝐹‘𝑛)) ↔ ((𝐹‘𝑛) < (1st
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) ∨ (2nd
‘(〈(1st ‘(𝐺‘(𝑛 − 1))), (2nd ‘(𝐺‘(𝑛 − 1)))〉𝐷(𝐹‘𝑛))) < (𝐹‘𝑛)))) |
49 | 30, 48 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) ∨ (2nd ‘(𝐺‘𝑛)) < (𝐹‘𝑛))) |
50 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (1st
∘ 𝐺) ⊆
ℝ) |
51 | 8 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (1st
∘ 𝐺) ≠
∅) |
52 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ 𝑛) |
53 | | nnnn0 12170 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
54 | | fvco3 6849 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ℕ0⟶(ℝ ×
ℝ) ∧ 𝑛 ∈
ℕ0) → ((1st ∘ 𝐺)‘𝑛) = (1st ‘(𝐺‘𝑛))) |
55 | 17, 53, 54 | syl2an 595 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
∘ 𝐺)‘𝑛) = (1st
‘(𝐺‘𝑛))) |
56 | 17 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺:ℕ0⟶(ℝ ×
ℝ)) |
57 | | 1stcof 7834 |
. . . . . . . . . . . . . 14
⊢ (𝐺:ℕ0⟶(ℝ ×
ℝ) → (1st ∘ 𝐺):ℕ0⟶ℝ) |
58 | | ffn 6584 |
. . . . . . . . . . . . . 14
⊢
((1st ∘ 𝐺):ℕ0⟶ℝ →
(1st ∘ 𝐺)
Fn ℕ0) |
59 | 56, 57, 58 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
∘ 𝐺) Fn
ℕ0) |
60 | 53 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
61 | | fnfvelrn 6940 |
. . . . . . . . . . . . 13
⊢
(((1st ∘ 𝐺) Fn ℕ0 ∧ 𝑛 ∈ ℕ0)
→ ((1st ∘ 𝐺)‘𝑛) ∈ ran (1st ∘ 𝐺)) |
62 | 59, 60, 61 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
∘ 𝐺)‘𝑛) ∈ ran (1st
∘ 𝐺)) |
63 | 55, 62 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) ∈ ran (1st
∘ 𝐺)) |
64 | 50, 51, 52, 63 | suprubd 11867 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) ≤ sup(ran (1st
∘ 𝐺), ℝ, <
)) |
65 | 64, 1 | breqtrrdi 5112 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) ≤ 𝑆) |
66 | | ffvelrn 6941 |
. . . . . . . . . . . 12
⊢ ((𝐺:ℕ0⟶(ℝ ×
ℝ) ∧ 𝑛 ∈
ℕ0) → (𝐺‘𝑛) ∈ (ℝ ×
ℝ)) |
67 | 17, 53, 66 | syl2an 595 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ (ℝ ×
ℝ)) |
68 | | xp1st 7836 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑛) ∈ (ℝ × ℝ) →
(1st ‘(𝐺‘𝑛)) ∈ ℝ) |
69 | 67, 68 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) ∈
ℝ) |
70 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ∈ ℝ) |
71 | | ltletr 10997 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑛) ∈ ℝ ∧ (1st
‘(𝐺‘𝑛)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) ∧ (1st ‘(𝐺‘𝑛)) ≤ 𝑆) → (𝐹‘𝑛) < 𝑆)) |
72 | 25, 69, 70, 71 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) ∧ (1st ‘(𝐺‘𝑛)) ≤ 𝑆) → (𝐹‘𝑛) < 𝑆)) |
73 | 65, 72 | mpan2d 690 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) → (𝐹‘𝑛) < 𝑆)) |
74 | | fvco3 6849 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺:ℕ0⟶(ℝ ×
ℝ) ∧ 𝑘 ∈
ℕ0) → ((1st ∘ 𝐺)‘𝑘) = (1st ‘(𝐺‘𝑘))) |
75 | 56, 74 | sylan 579 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) →
((1st ∘ 𝐺)‘𝑘) = (1st ‘(𝐺‘𝑘))) |
76 | 56 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ (ℝ ×
ℝ)) |
77 | | xp1st 7836 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑘) ∈ (ℝ × ℝ) →
(1st ‘(𝐺‘𝑘)) ∈ ℝ) |
78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) →
(1st ‘(𝐺‘𝑘)) ∈ ℝ) |
79 | | xp2nd 7837 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑛) ∈ (ℝ × ℝ) →
(2nd ‘(𝐺‘𝑛)) ∈ ℝ) |
80 | 67, 79 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) ∈
ℝ) |
81 | 80 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) →
(2nd ‘(𝐺‘𝑛)) ∈ ℝ) |
82 | 15 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐹:ℕ⟶ℝ) |
83 | 16 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦
⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
84 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
85 | 60 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
86 | 82, 83, 4, 5, 84, 85 | ruclem10 15876 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) →
(1st ‘(𝐺‘𝑘)) < (2nd ‘(𝐺‘𝑛))) |
87 | 78, 81, 86 | ltled 11053 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) →
(1st ‘(𝐺‘𝑘)) ≤ (2nd ‘(𝐺‘𝑛))) |
88 | 75, 87 | eqbrtrd 5092 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) →
((1st ∘ 𝐺)‘𝑘) ≤ (2nd ‘(𝐺‘𝑛))) |
89 | 88 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ0
((1st ∘ 𝐺)‘𝑘) ≤ (2nd ‘(𝐺‘𝑛))) |
90 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ((1st ∘
𝐺)‘𝑘) → (𝑧 ≤ (2nd ‘(𝐺‘𝑛)) ↔ ((1st ∘ 𝐺)‘𝑘) ≤ (2nd ‘(𝐺‘𝑛)))) |
91 | 90 | ralrn 6946 |
. . . . . . . . . . . . 13
⊢
((1st ∘ 𝐺) Fn ℕ0 →
(∀𝑧 ∈ ran
(1st ∘ 𝐺)𝑧 ≤ (2nd ‘(𝐺‘𝑛)) ↔ ∀𝑘 ∈ ℕ0 ((1st
∘ 𝐺)‘𝑘) ≤ (2nd
‘(𝐺‘𝑛)))) |
92 | 59, 91 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ (2nd
‘(𝐺‘𝑛)) ↔ ∀𝑘 ∈ ℕ0
((1st ∘ 𝐺)‘𝑘) ≤ (2nd ‘(𝐺‘𝑛)))) |
93 | 89, 92 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ (2nd
‘(𝐺‘𝑛))) |
94 | | suprleub 11871 |
. . . . . . . . . . . 12
⊢ (((ran
(1st ∘ 𝐺)
⊆ ℝ ∧ ran (1st ∘ 𝐺) ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ ran (1st
∘ 𝐺)𝑧 ≤ 𝑛) ∧ (2nd ‘(𝐺‘𝑛)) ∈ ℝ) → (sup(ran
(1st ∘ 𝐺),
ℝ, < ) ≤ (2nd ‘(𝐺‘𝑛)) ↔ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ (2nd ‘(𝐺‘𝑛)))) |
95 | 50, 51, 52, 80, 94 | syl31anc 1371 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (sup(ran
(1st ∘ 𝐺),
ℝ, < ) ≤ (2nd ‘(𝐺‘𝑛)) ↔ ∀𝑧 ∈ ran (1st ∘ 𝐺)𝑧 ≤ (2nd ‘(𝐺‘𝑛)))) |
96 | 93, 95 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → sup(ran
(1st ∘ 𝐺),
ℝ, < ) ≤ (2nd ‘(𝐺‘𝑛))) |
97 | 1, 96 | eqbrtrid 5105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ≤ (2nd ‘(𝐺‘𝑛))) |
98 | | lelttr 10996 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ ℝ ∧
(2nd ‘(𝐺‘𝑛)) ∈ ℝ ∧ (𝐹‘𝑛) ∈ ℝ) → ((𝑆 ≤ (2nd ‘(𝐺‘𝑛)) ∧ (2nd ‘(𝐺‘𝑛)) < (𝐹‘𝑛)) → 𝑆 < (𝐹‘𝑛))) |
99 | 70, 80, 25, 98 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑆 ≤ (2nd ‘(𝐺‘𝑛)) ∧ (2nd ‘(𝐺‘𝑛)) < (𝐹‘𝑛)) → 𝑆 < (𝐹‘𝑛))) |
100 | 97, 99 | mpand 691 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((2nd
‘(𝐺‘𝑛)) < (𝐹‘𝑛) → 𝑆 < (𝐹‘𝑛))) |
101 | 73, 100 | orim12d 961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝐹‘𝑛) < (1st ‘(𝐺‘𝑛)) ∨ (2nd ‘(𝐺‘𝑛)) < (𝐹‘𝑛)) → ((𝐹‘𝑛) < 𝑆 ∨ 𝑆 < (𝐹‘𝑛)))) |
102 | 49, 101 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) < 𝑆 ∨ 𝑆 < (𝐹‘𝑛))) |
103 | 25, 70 | lttri2d 11044 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ≠ 𝑆 ↔ ((𝐹‘𝑛) < 𝑆 ∨ 𝑆 < (𝐹‘𝑛)))) |
104 | 102, 103 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ≠ 𝑆) |
105 | 104 | neneqd 2947 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ¬ (𝐹‘𝑛) = 𝑆) |
106 | 105 | nrexdv 3197 |
. . 3
⊢ (𝜑 → ¬ ∃𝑛 ∈ ℕ (𝐹‘𝑛) = 𝑆) |
107 | | risset 3193 |
. . . 4
⊢ (𝑆 ∈ ran 𝐹 ↔ ∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆) |
108 | | ffn 6584 |
. . . . 5
⊢ (𝐹:ℕ⟶ℝ →
𝐹 Fn
ℕ) |
109 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑧 = (𝐹‘𝑛) → (𝑧 = 𝑆 ↔ (𝐹‘𝑛) = 𝑆)) |
110 | 109 | rexrn 6945 |
. . . . 5
⊢ (𝐹 Fn ℕ → (∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆 ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) = 𝑆)) |
111 | 2, 108, 110 | 3syl 18 |
. . . 4
⊢ (𝜑 → (∃𝑧 ∈ ran 𝐹 𝑧 = 𝑆 ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) = 𝑆)) |
112 | 107, 111 | syl5bb 282 |
. . 3
⊢ (𝜑 → (𝑆 ∈ ran 𝐹 ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) = 𝑆)) |
113 | 106, 112 | mtbird 324 |
. 2
⊢ (𝜑 → ¬ 𝑆 ∈ ran 𝐹) |
114 | 14, 113 | eldifd 3894 |
1
⊢ (𝜑 → 𝑆 ∈ (ℝ ∖ ran 𝐹)) |