![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasdsval | Structured version Visualization version GIF version |
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
imasbas.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasbas.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasbas.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imasbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasds.e | ⊢ 𝐸 = (dist‘𝑅) |
imasds.d | ⊢ 𝐷 = (dist‘𝑈) |
imasdsval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
imasdsval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
imasdsval.s | ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} |
Ref | Expression |
---|---|
imasdsval | ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasbas.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasbas.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasbas.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
4 | imasbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | imasds.e | . . 3 ⊢ 𝐸 = (dist‘𝑅) | |
6 | imasds.d | . . 3 ⊢ 𝐷 = (dist‘𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | imasds 17392 | . 2 ⊢ (𝜑 → 𝐷 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ))) |
8 | simplrl 775 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → 𝑥 = 𝑋) | |
9 | 8 | eqeq2d 2747 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ↔ (𝐹‘(1st ‘(ℎ‘1))) = 𝑋)) |
10 | simplrr 776 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → 𝑦 = 𝑌) | |
11 | 10 | eqeq2d 2747 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ↔ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌)) |
12 | 9, 11 | 3anbi12d 1437 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → (((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1))))) ↔ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1))))))) |
13 | 12 | rabbidv 3414 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))}) |
14 | imasdsval.s | . . . . . . 7 ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} | |
15 | 13, 14 | eqtr4di 2794 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} = 𝑆) |
16 | 15 | mpteq1d 5199 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
17 | 16 | rneqd 5892 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
18 | 17 | iuneq2dv 4977 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
19 | 18 | infeq1d 9410 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) |
20 | imasdsval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | imasdsval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
22 | xrltso 13057 | . . . 4 ⊢ < Or ℝ* | |
23 | 22 | infex 9426 | . . 3 ⊢ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ) ∈ V |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ) ∈ V) |
25 | 7, 19, 20, 21, 24 | ovmpod 7504 | 1 ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3063 {crab 3406 Vcvv 3444 ∪ ciun 4953 ↦ cmpt 5187 × cxp 5630 ran crn 5633 ∘ ccom 5636 –onto→wfo 6492 ‘cfv 6494 (class class class)co 7354 1st c1st 7916 2nd c2nd 7917 ↑m cmap 8762 infcinf 9374 1c1 11049 + caddc 11051 ℝ*cxr 11185 < clt 11186 − cmin 11382 ℕcn 12150 ...cfz 13421 Basecbs 17080 distcds 17139 Σg cgsu 17319 ℝ*𝑠cxrs 17379 “s cimas 17383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7669 ax-cnex 11104 ax-resscn 11105 ax-1cn 11106 ax-icn 11107 ax-addcl 11108 ax-addrcl 11109 ax-mulcl 11110 ax-mulrcl 11111 ax-mulcom 11112 ax-addass 11113 ax-mulass 11114 ax-distr 11115 ax-i2m1 11116 ax-1ne0 11117 ax-1rid 11118 ax-rnegex 11119 ax-rrecex 11120 ax-cnre 11121 ax-pre-lttri 11122 ax-pre-lttrn 11123 ax-pre-ltadd 11124 ax-pre-mulgt0 11125 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7310 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7800 df-1st 7918 df-2nd 7919 df-frecs 8209 df-wrecs 8240 df-recs 8314 df-rdg 8353 df-1o 8409 df-er 8645 df-en 8881 df-dom 8882 df-sdom 8883 df-fin 8884 df-sup 9375 df-inf 9376 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11384 df-neg 11385 df-nn 12151 df-2 12213 df-3 12214 df-4 12215 df-5 12216 df-6 12217 df-7 12218 df-8 12219 df-9 12220 df-n0 12411 df-z 12497 df-dec 12616 df-uz 12761 df-fz 13422 df-struct 17016 df-slot 17051 df-ndx 17063 df-base 17081 df-plusg 17143 df-mulr 17144 df-sca 17146 df-vsca 17147 df-ip 17148 df-tset 17149 df-ple 17150 df-ds 17152 df-imas 17387 |
This theorem is referenced by: imasdsval2 17395 |
Copyright terms: Public domain | W3C validator |