Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imasdsval | Structured version Visualization version GIF version |
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
imasbas.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasbas.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasbas.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imasbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasds.e | ⊢ 𝐸 = (dist‘𝑅) |
imasds.d | ⊢ 𝐷 = (dist‘𝑈) |
imasdsval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
imasdsval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
imasdsval.s | ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} |
Ref | Expression |
---|---|
imasdsval | ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasbas.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasbas.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasbas.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
4 | imasbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | imasds.e | . . 3 ⊢ 𝐸 = (dist‘𝑅) | |
6 | imasds.d | . . 3 ⊢ 𝐷 = (dist‘𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | imasds 17141 | . 2 ⊢ (𝜑 → 𝐷 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ))) |
8 | simplrl 773 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → 𝑥 = 𝑋) | |
9 | 8 | eqeq2d 2749 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ↔ (𝐹‘(1st ‘(ℎ‘1))) = 𝑋)) |
10 | simplrr 774 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → 𝑦 = 𝑌) | |
11 | 10 | eqeq2d 2749 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ↔ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌)) |
12 | 9, 11 | 3anbi12d 1435 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → (((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1))))) ↔ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1))))))) |
13 | 12 | rabbidv 3404 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))}) |
14 | imasdsval.s | . . . . . . 7 ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} | |
15 | 13, 14 | eqtr4di 2797 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} = 𝑆) |
16 | 15 | mpteq1d 5165 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
17 | 16 | rneqd 5836 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
18 | 17 | iuneq2dv 4945 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
19 | 18 | infeq1d 9166 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) |
20 | imasdsval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | imasdsval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
22 | xrltso 12804 | . . . 4 ⊢ < Or ℝ* | |
23 | 22 | infex 9182 | . . 3 ⊢ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ) ∈ V |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ) ∈ V) |
25 | 7, 19, 20, 21, 24 | ovmpod 7403 | 1 ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 ∪ ciun 4921 ↦ cmpt 5153 × cxp 5578 ran crn 5581 ∘ ccom 5584 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 ↑m cmap 8573 infcinf 9130 1c1 10803 + caddc 10805 ℝ*cxr 10939 < clt 10940 − cmin 11135 ℕcn 11903 ...cfz 13168 Basecbs 16840 distcds 16897 Σg cgsu 17068 ℝ*𝑠cxrs 17128 “s cimas 17132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-imas 17136 |
This theorem is referenced by: imasdsval2 17144 |
Copyright terms: Public domain | W3C validator |