| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fseq1m1p1 | Structured version Visualization version GIF version | ||
| Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) |
| Ref | Expression |
|---|---|
| fseq1m1p1.1 | ⊢ 𝐻 = {〈𝑁, 𝐵〉} |
| Ref | Expression |
|---|---|
| fseq1m1p1 | ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnm1nn0 12542 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 2 | eqid 2735 | . . . 4 ⊢ {〈((𝑁 − 1) + 1), 𝐵〉} = {〈((𝑁 − 1) + 1), 𝐵〉} | |
| 3 | 2 | fseq1p1m1 13615 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ0 → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
| 5 | nncn 12248 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 6 | ax-1cn 11187 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 7 | npcan 11491 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
| 9 | 8 | opeq1d 4855 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 〈((𝑁 − 1) + 1), 𝐵〉 = 〈𝑁, 𝐵〉) |
| 10 | 9 | sneqd 4613 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → {〈((𝑁 − 1) + 1), 𝐵〉} = {〈𝑁, 𝐵〉}) |
| 11 | fseq1m1p1.1 | . . . . . 6 ⊢ 𝐻 = {〈𝑁, 𝐵〉} | |
| 12 | 10, 11 | eqtr4di 2788 | . . . . 5 ⊢ (𝑁 ∈ ℕ → {〈((𝑁 − 1) + 1), 𝐵〉} = 𝐻) |
| 13 | 12 | uneq2d 4143 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉}) = (𝐹 ∪ 𝐻)) |
| 14 | 13 | eqeq2d 2746 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉}) ↔ 𝐺 = (𝐹 ∪ 𝐻))) |
| 15 | 14 | 3anbi3d 1444 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉})) ↔ (𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)))) |
| 16 | 8 | oveq2d 7421 | . . . 4 ⊢ (𝑁 ∈ ℕ → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
| 17 | 16 | feq2d 6692 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ↔ 𝐺:(1...𝑁)⟶𝐴)) |
| 18 | 8 | fveqeq2d 6884 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝐺‘((𝑁 − 1) + 1)) = 𝐵 ↔ (𝐺‘𝑁) = 𝐵)) |
| 19 | 17, 18 | 3anbi12d 1439 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
| 20 | 4, 15, 19 | 3bitr3d 309 | 1 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 {csn 4601 〈cop 4607 ↾ cres 5656 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 − cmin 11466 ℕcn 12240 ℕ0cn0 12501 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |