![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fseq1m1p1 | Structured version Visualization version GIF version |
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
fseq1m1p1.1 | ⊢ 𝐻 = {⟨𝑁, 𝐵⟩} |
Ref | Expression |
---|---|
fseq1m1p1 | ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnm1nn0 12509 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
2 | eqid 2732 | . . . 4 ⊢ {⟨((𝑁 − 1) + 1), 𝐵⟩} = {⟨((𝑁 − 1) + 1), 𝐵⟩} | |
3 | 2 | fseq1p1m1 13571 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ0 → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
5 | nncn 12216 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
6 | ax-1cn 11164 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
7 | npcan 11465 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
8 | 5, 6, 7 | sylancl 586 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
9 | 8 | opeq1d 4878 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ⟨((𝑁 − 1) + 1), 𝐵⟩ = ⟨𝑁, 𝐵⟩) |
10 | 9 | sneqd 4639 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → {⟨((𝑁 − 1) + 1), 𝐵⟩} = {⟨𝑁, 𝐵⟩}) |
11 | fseq1m1p1.1 | . . . . . 6 ⊢ 𝐻 = {⟨𝑁, 𝐵⟩} | |
12 | 10, 11 | eqtr4di 2790 | . . . . 5 ⊢ (𝑁 ∈ ℕ → {⟨((𝑁 − 1) + 1), 𝐵⟩} = 𝐻) |
13 | 12 | uneq2d 4162 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩}) = (𝐹 ∪ 𝐻)) |
14 | 13 | eqeq2d 2743 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩}) ↔ 𝐺 = (𝐹 ∪ 𝐻))) |
15 | 14 | 3anbi3d 1442 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)))) |
16 | 8 | oveq2d 7421 | . . . 4 ⊢ (𝑁 ∈ ℕ → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
17 | 16 | feq2d 6700 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ↔ 𝐺:(1...𝑁)⟶𝐴)) |
18 | 8 | fveqeq2d 6896 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝐺‘((𝑁 − 1) + 1)) = 𝐵 ↔ (𝐺‘𝑁) = 𝐵)) |
19 | 17, 18 | 3anbi12d 1437 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
20 | 4, 15, 19 | 3bitr3d 308 | 1 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∪ cun 3945 {csn 4627 ⟨cop 4633 ↾ cres 5677 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 1c1 11107 + caddc 11109 − cmin 11440 ℕcn 12208 ℕ0cn0 12468 ...cfz 13480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |