MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseq1m1p1 Structured version   Visualization version   GIF version

Theorem fseq1m1p1 12975
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypothesis
Ref Expression
fseq1m1p1.1 𝐻 = {⟨𝑁, 𝐵⟩}
Assertion
Ref Expression
fseq1m1p1 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))

Proof of Theorem fseq1m1p1
StepHypRef Expression
1 nnm1nn0 11930 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2 eqid 2825 . . . 4 {⟨((𝑁 − 1) + 1), 𝐵⟩} = {⟨((𝑁 − 1) + 1), 𝐵⟩}
32fseq1p1m1 12974 . . 3 ((𝑁 − 1) ∈ ℕ0 → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
41, 3syl 17 . 2 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
5 nncn 11638 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6 ax-1cn 10587 . . . . . . . . 9 1 ∈ ℂ
7 npcan 10887 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
85, 6, 7sylancl 586 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
98opeq1d 4807 . . . . . . 7 (𝑁 ∈ ℕ → ⟨((𝑁 − 1) + 1), 𝐵⟩ = ⟨𝑁, 𝐵⟩)
109sneqd 4575 . . . . . 6 (𝑁 ∈ ℕ → {⟨((𝑁 − 1) + 1), 𝐵⟩} = {⟨𝑁, 𝐵⟩})
11 fseq1m1p1.1 . . . . . 6 𝐻 = {⟨𝑁, 𝐵⟩}
1210, 11syl6eqr 2878 . . . . 5 (𝑁 ∈ ℕ → {⟨((𝑁 − 1) + 1), 𝐵⟩} = 𝐻)
1312uneq2d 4142 . . . 4 (𝑁 ∈ ℕ → (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩}) = (𝐹𝐻))
1413eqeq2d 2836 . . 3 (𝑁 ∈ ℕ → (𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩}) ↔ 𝐺 = (𝐹𝐻)))
15143anbi3d 1435 . 2 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))))
168oveq2d 7167 . . . 4 (𝑁 ∈ ℕ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
1716feq2d 6496 . . 3 (𝑁 ∈ ℕ → (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴𝐺:(1...𝑁)⟶𝐴))
188fveqeq2d 6674 . . 3 (𝑁 ∈ ℕ → ((𝐺‘((𝑁 − 1) + 1)) = 𝐵 ↔ (𝐺𝑁) = 𝐵))
1917, 183anbi12d 1430 . 2 (𝑁 ∈ ℕ → ((𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
204, 15, 193bitr3d 310 1 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  w3a 1081   = wceq 1530  wcel 2107  cun 3937  {csn 4563  cop 4569  cres 5555  wf 6347  cfv 6351  (class class class)co 7151  cc 10527  1c1 10530   + caddc 10532  cmin 10862  cn 11630  0cn0 11889  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator