Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrf1istrl Structured version   Visualization version   GIF version

Theorem upgrf1istrl 26892
 Description: Properties of a pair of a one-to-one function into the set of indices of edges and a function into the set of vertices to be a trail in a pseudograph. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 29-Oct-2021.)
Hypotheses
Ref Expression
upgrtrls.v 𝑉 = (Vtx‘𝐺)
upgrtrls.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrf1istrl (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐼   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘

Proof of Theorem upgrf1istrl
StepHypRef Expression
1 upgrtrls.v . . 3 𝑉 = (Vtx‘𝐺)
2 upgrtrls.i . . 3 𝐼 = (iEdg‘𝐺)
31, 2upgristrl 26891 . 2 (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
4 iswrdb 13492 . . . . . 6 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
54a1i 11 . . . . 5 (𝐺 ∈ UPGraph → (𝐹 ∈ Word dom 𝐼𝐹:(0..^(♯‘𝐹))⟶dom 𝐼))
65anbi1d 623 . . . 4 (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹) ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹)))
7 df-f1 6073 . . . 4 (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ Fun 𝐹))
86, 7syl6bbr 280 . . 3 (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹) ↔ 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼))
983anbi1d 1564 . 2 (𝐺 ∈ UPGraph → (((𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
103, 9bitrd 270 1 (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 197   ∧ wa 384   ∧ w3a 1107   = wceq 1652   ∈ wcel 2155  ∀wral 3055  {cpr 4336   class class class wbr 4809  ◡ccnv 5276  dom cdm 5277  Fun wfun 6062  ⟶wf 6064  –1-1→wf1 6065  ‘cfv 6068  (class class class)co 6842  0cc0 10189  1c1 10190   + caddc 10192  ...cfz 12533  ..^cfzo 12673  ♯chash 13321  Word cword 13486  Vtxcvtx 26165  iEdgciedg 26166  UPGraphcupgr 26252  Trailsctrls 26879 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266 This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-ifp 1086  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-n0 11539  df-xnn0 11611  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13487  df-edg 26217  df-uhgr 26230  df-upgr 26254  df-wlks 26786  df-trls 26881 This theorem is referenced by:  usgr2trlncl  26948  usgr2pth  26952
 Copyright terms: Public domain W3C validator