Step | Hyp | Ref
| Expression |
1 | | jensen.7 |
. . . . . 6
⊢ (𝜑 → 0 <
(ℂfld Σg 𝑇)) |
2 | | jensen.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) |
3 | 2 | ffnd 6278 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 Fn 𝐴) |
4 | | fnresdm 6232 |
. . . . . . . 8
⊢ (𝑇 Fn 𝐴 → (𝑇 ↾ 𝐴) = 𝑇) |
5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑇 ↾ 𝐴) = 𝑇) |
6 | 5 | oveq2d 6920 |
. . . . . 6
⊢ (𝜑 → (ℂfld
Σg (𝑇 ↾ 𝐴)) = (ℂfld
Σg 𝑇)) |
7 | 1, 6 | breqtrrd 4900 |
. . . . 5
⊢ (𝜑 → 0 <
(ℂfld Σg (𝑇 ↾ 𝐴))) |
8 | | ssid 3847 |
. . . . 5
⊢ 𝐴 ⊆ 𝐴 |
9 | 7, 8 | jctil 517 |
. . . 4
⊢ (𝜑 → (𝐴 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴)))) |
10 | | jensen.4 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ Fin) |
11 | | sseq1 3850 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
12 | | reseq2 5623 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → (𝑇 ↾ 𝑎) = (𝑇 ↾ ∅)) |
13 | | res0 5632 |
. . . . . . . . . . . . 13
⊢ (𝑇 ↾ ∅) =
∅ |
14 | 12, 13 | syl6eq 2876 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → (𝑇 ↾ 𝑎) = ∅) |
15 | 14 | oveq2d 6920 |
. . . . . . . . . . 11
⊢ (𝑎 = ∅ →
(ℂfld Σg (𝑇 ↾ 𝑎)) = (ℂfld
Σg ∅)) |
16 | | cnfld0 20129 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘ℂfld) |
17 | 16 | gsum0 17630 |
. . . . . . . . . . 11
⊢
(ℂfld Σg ∅) =
0 |
18 | 15, 17 | syl6eq 2876 |
. . . . . . . . . 10
⊢ (𝑎 = ∅ →
(ℂfld Σg (𝑇 ↾ 𝑎)) = 0) |
19 | 18 | breq2d 4884 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (0 <
(ℂfld Σg (𝑇 ↾ 𝑎)) ↔ 0 < 0)) |
20 | 11, 19 | anbi12d 626 |
. . . . . . . 8
⊢ (𝑎 = ∅ → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (∅ ⊆ 𝐴 ∧ 0 < 0))) |
21 | | reseq2 5623 |
. . . . . . . . . . 11
⊢ (𝑎 = ∅ → ((𝑇 ∘𝑓
· 𝑋) ↾ 𝑎) = ((𝑇 ∘𝑓 · 𝑋) ↾
∅)) |
22 | 21 | oveq2d 6920 |
. . . . . . . . . 10
⊢ (𝑎 = ∅ →
(ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾
∅))) |
23 | 22, 18 | oveq12d 6922 |
. . . . . . . . 9
⊢ (𝑎 = ∅ →
((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) /
0)) |
24 | | reseq2 5623 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → ((𝑇 ∘𝑓
· (𝐹 ∘ 𝑋)) ↾ 𝑎) = ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) |
25 | 24 | oveq2d 6920 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ →
(ℂfld Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅))) |
26 | 25, 18 | oveq12d 6922 |
. . . . . . . . . . 11
⊢ (𝑎 = ∅ →
((ℂfld Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) / 0)) |
27 | 26 | breq2d 4884 |
. . . . . . . . . 10
⊢ (𝑎 = ∅ → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) / 0))) |
28 | 27 | rabbidv 3401 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} = {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) / 0)}) |
29 | 23, 28 | eleq12d 2899 |
. . . . . . . 8
⊢ (𝑎 = ∅ →
(((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} ↔ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) / 0) ∈
{𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) /
0)})) |
30 | 20, 29 | imbi12d 336 |
. . . . . . 7
⊢ (𝑎 = ∅ → (((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))}) ↔ ((∅ ⊆ 𝐴 ∧ 0 < 0) →
((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) / 0) ∈
{𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) /
0)}))) |
31 | 30 | imbi2d 332 |
. . . . . 6
⊢ (𝑎 = ∅ → ((𝜑 → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))})) ↔ (𝜑 → ((∅ ⊆ 𝐴 ∧ 0 < 0) →
((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) / 0) ∈
{𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) /
0)})))) |
32 | | sseq1 3850 |
. . . . . . . . 9
⊢ (𝑎 = 𝑘 → (𝑎 ⊆ 𝐴 ↔ 𝑘 ⊆ 𝐴)) |
33 | | reseq2 5623 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑘 → (𝑇 ↾ 𝑎) = (𝑇 ↾ 𝑘)) |
34 | 33 | oveq2d 6920 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑘 → (ℂfld
Σg (𝑇 ↾ 𝑎)) = (ℂfld
Σg (𝑇 ↾ 𝑘))) |
35 | 34 | breq2d 4884 |
. . . . . . . . 9
⊢ (𝑎 = 𝑘 → (0 < (ℂfld
Σg (𝑇 ↾ 𝑎)) ↔ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘)))) |
36 | 32, 35 | anbi12d 626 |
. . . . . . . 8
⊢ (𝑎 = 𝑘 → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
37 | | reseq2 5623 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑘 → ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎) = ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) |
38 | 37 | oveq2d 6920 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑘 → (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘))) |
39 | 38, 34 | oveq12d 6922 |
. . . . . . . . 9
⊢ (𝑎 = 𝑘 → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) |
40 | | reseq2 5623 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑘 → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎) = ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) |
41 | 40 | oveq2d 6920 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑘 → (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘))) |
42 | 41, 34 | oveq12d 6922 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑘 → ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) |
43 | 42 | breq2d 4884 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑘 → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
44 | 43 | rabbidv 3401 |
. . . . . . . . 9
⊢ (𝑎 = 𝑘 → {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} = {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) |
45 | 39, 44 | eleq12d 2899 |
. . . . . . . 8
⊢ (𝑎 = 𝑘 → (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} ↔ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) |
46 | 36, 45 | imbi12d 336 |
. . . . . . 7
⊢ (𝑎 = 𝑘 → (((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))}) ↔ ((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}))) |
47 | 46 | imbi2d 332 |
. . . . . 6
⊢ (𝑎 = 𝑘 → ((𝜑 → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))})) ↔ (𝜑 → ((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})))) |
48 | | sseq1 3850 |
. . . . . . . . 9
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (𝑎 ⊆ 𝐴 ↔ (𝑘 ∪ {𝑐}) ⊆ 𝐴)) |
49 | | reseq2 5623 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (𝑇 ↾ 𝑎) = (𝑇 ↾ (𝑘 ∪ {𝑐}))) |
50 | 49 | oveq2d 6920 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (ℂfld
Σg (𝑇 ↾ 𝑎)) = (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) |
51 | 50 | breq2d 4884 |
. . . . . . . . 9
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (0 < (ℂfld
Σg (𝑇 ↾ 𝑎)) ↔ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) |
52 | 48, 51 | anbi12d 626 |
. . . . . . . 8
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))))) |
53 | | reseq2 5623 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎) = ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) |
54 | 53 | oveq2d 6920 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐})))) |
55 | 54, 50 | oveq12d 6922 |
. . . . . . . . 9
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) |
56 | | reseq2 5623 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎) = ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) |
57 | 56 | oveq2d 6920 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐})))) |
58 | 57, 50 | oveq12d 6922 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) |
59 | 58 | breq2d 4884 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))))) |
60 | 59 | rabbidv 3401 |
. . . . . . . . 9
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} = {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))}) |
61 | 55, 60 | eleq12d 2899 |
. . . . . . . 8
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} ↔ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
62 | 52, 61 | imbi12d 336 |
. . . . . . 7
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → (((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))}) ↔ (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))}))) |
63 | 62 | imbi2d 332 |
. . . . . 6
⊢ (𝑎 = (𝑘 ∪ {𝑐}) → ((𝜑 → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))})) ↔ (𝜑 → (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})))) |
64 | | sseq1 3850 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
65 | | reseq2 5623 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (𝑇 ↾ 𝑎) = (𝑇 ↾ 𝐴)) |
66 | 65 | oveq2d 6920 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (ℂfld
Σg (𝑇 ↾ 𝑎)) = (ℂfld
Σg (𝑇 ↾ 𝐴))) |
67 | 66 | breq2d 4884 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (0 < (ℂfld
Σg (𝑇 ↾ 𝑎)) ↔ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴)))) |
68 | 64, 67 | anbi12d 626 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (𝐴 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴))))) |
69 | | reseq2 5623 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎) = ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) |
70 | 69 | oveq2d 6920 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴))) |
71 | 70, 66 | oveq12d 6922 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))) |
72 | | reseq2 5623 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎) = ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) |
73 | 72 | oveq2d 6920 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) = (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴))) |
74 | 73, 66 | oveq12d 6922 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) = ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))) |
75 | 74 | breq2d 4884 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ↔ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))))) |
76 | 75 | rabbidv 3401 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} = {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))}) |
77 | 71, 76 | eleq12d 2899 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))} ↔ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))})) |
78 | 68, 77 | imbi12d 336 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))}) ↔ ((𝐴 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))}))) |
79 | 78 | imbi2d 332 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝜑 → ((𝑎 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑎))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑎)) / (ℂfld
Σg (𝑇 ↾ 𝑎)))})) ↔ (𝜑 → ((𝐴 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))})))) |
80 | | 0re 10357 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
81 | 80 | ltnri 10464 |
. . . . . . . . 9
⊢ ¬ 0
< 0 |
82 | 81 | pm2.21i 117 |
. . . . . . . 8
⊢ (0 < 0
→ ((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) / 0) ∈
{𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) / 0)}) |
83 | 82 | adantl 475 |
. . . . . . 7
⊢ ((∅
⊆ 𝐴 ∧ 0 < 0)
→ ((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) / 0) ∈
{𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) / 0)}) |
84 | 83 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((∅ ⊆ 𝐴 ∧ 0 < 0) →
((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ ∅)) / 0) ∈
{𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ ∅)) /
0)})) |
85 | | impexp 443 |
. . . . . . . . . . . 12
⊢ (((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) ↔ (𝑘 ⊆ 𝐴 → (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}))) |
86 | | simprl 789 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (𝑘 ∪ {𝑐}) ⊆ 𝐴) |
87 | 86 | unssad 4016 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → 𝑘 ⊆ 𝐴) |
88 | | simpr 479 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) |
89 | | jensen.1 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
90 | 89 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 𝐷 ⊆ ℝ) |
91 | | jensen.2 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
92 | 91 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 𝐹:𝐷⟶ℝ) |
93 | | simplll 793 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 𝜑) |
94 | | jensen.3 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) |
95 | 93, 94 | sylan 577 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) |
96 | 93, 10 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 𝐴 ∈ Fin) |
97 | 93, 2 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 𝑇:𝐴⟶(0[,)+∞)) |
98 | | jensen.6 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑋:𝐴⟶𝐷) |
99 | 93, 98 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 𝑋:𝐴⟶𝐷) |
100 | 1 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 0 < (ℂfld
Σg 𝑇)) |
101 | | jensen.8 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
102 | 93, 101 | sylan 577 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
103 | | simpllr 795 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → ¬ 𝑐 ∈ 𝑘) |
104 | 86 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (𝑘 ∪ {𝑐}) ⊆ 𝐴) |
105 | | eqid 2824 |
. . . . . . . . . . . . . . . . . 18
⊢
(ℂfld Σg (𝑇 ↾ 𝑘)) = (ℂfld
Σg (𝑇 ↾ 𝑘)) |
106 | | eqid 2824 |
. . . . . . . . . . . . . . . . . 18
⊢
(ℂfld Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))) = (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))) |
107 | | cnring 20127 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
ℂfld ∈ Ring |
108 | | ringcmn 18934 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(ℂfld ∈ Ring → ℂfld ∈
CMnd) |
109 | 107, 108 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → ℂfld ∈
CMnd) |
110 | 10 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → 𝐴 ∈ Fin) |
111 | | ssfi 8448 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ Fin ∧ 𝑘 ⊆ 𝐴) → 𝑘 ∈ Fin) |
112 | 110, 87, 111 | syl2anc 581 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → 𝑘 ∈ Fin) |
113 | | rege0subm 20161 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(0[,)+∞) ∈
(SubMnd‘ℂfld) |
114 | 113 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (0[,)+∞) ∈
(SubMnd‘ℂfld)) |
115 | 2 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → 𝑇:𝐴⟶(0[,)+∞)) |
116 | 115, 87 | fssresd 6307 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (𝑇 ↾ 𝑘):𝑘⟶(0[,)+∞)) |
117 | | c0ex 10349 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ∈
V |
118 | 117 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → 0 ∈ V) |
119 | 116, 112,
118 | fdmfifsupp 8553 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (𝑇 ↾ 𝑘) finSupp 0) |
120 | 16, 109, 112, 114, 116, 119 | gsumsubmcl 18671 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (ℂfld
Σg (𝑇 ↾ 𝑘)) ∈ (0[,)+∞)) |
121 | | elrege0 12567 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((ℂfld Σg (𝑇 ↾ 𝑘)) ∈ (0[,)+∞) ↔
((ℂfld Σg (𝑇 ↾ 𝑘)) ∈ ℝ ∧ 0 ≤
(ℂfld Σg (𝑇 ↾ 𝑘)))) |
122 | 121 | simplbi 493 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((ℂfld Σg (𝑇 ↾ 𝑘)) ∈ (0[,)+∞) →
(ℂfld Σg (𝑇 ↾ 𝑘)) ∈ ℝ) |
123 | 120, 122 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (ℂfld
Σg (𝑇 ↾ 𝑘)) ∈ ℝ) |
124 | 123 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (ℂfld
Σg (𝑇 ↾ 𝑘)) ∈ ℝ) |
125 | | simprl 789 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) |
126 | 124, 125 | elrpd 12152 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (ℂfld
Σg (𝑇 ↾ 𝑘)) ∈
ℝ+) |
127 | | simprr 791 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) |
128 | | fveq2 6432 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹‘𝑤) = (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
129 | 128 | breq1d 4882 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ↔ (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
130 | 129 | elrab 3584 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))} ↔ (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ 𝐷 ∧ (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
131 | 127, 130 | sylib 210 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ 𝐷 ∧ (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
132 | 131 | simpld 490 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ 𝐷) |
133 | 131 | simprd 491 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))) |
134 | 90, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 126, 132, 133 | jensenlem2 25126 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ 𝐷 ∧ (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))))) |
135 | | fveq2 6432 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → (𝐹‘𝑤) = (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))))) |
136 | 135 | breq1d 4882 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ↔ (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))))) |
137 | 136 | elrab 3584 |
. . . . . . . . . . . . . . . . 17
⊢
(((ℂfld Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))} ↔ (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ 𝐷 ∧ (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))))) |
138 | 134, 137 | sylibr 226 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∧ ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))}) |
139 | 138 | expr 450 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))} → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
140 | 88, 139 | embantd 59 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
141 | | cnfldbas 20109 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℂ =
(Base‘ℂfld) |
142 | | ringmnd 18909 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(ℂfld ∈ Ring → ℂfld ∈
Mnd) |
143 | 107, 142 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ℂfld ∈
Mnd) |
144 | | ssfi 8448 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ Fin ∧ (𝑘 ∪ {𝑐}) ⊆ 𝐴) → (𝑘 ∪ {𝑐}) ∈ Fin) |
145 | 110, 86, 144 | syl2anc 581 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (𝑘 ∪ {𝑐}) ∈ Fin) |
146 | 145 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑘 ∪ {𝑐}) ∈ Fin) |
147 | | ssun2 4003 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑐} ⊆ (𝑘 ∪ {𝑐}) |
148 | | vsnid 4429 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑐 ∈ {𝑐} |
149 | 147, 148 | sselii 3823 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑐 ∈ (𝑘 ∪ {𝑐}) |
150 | 149 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑐 ∈ (𝑘 ∪ {𝑐})) |
151 | | remulcl 10336 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) |
152 | 151 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) |
153 | | rge0ssre 12569 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0[,)+∞) ⊆ ℝ |
154 | | fss 6290 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑇:𝐴⟶(0[,)+∞) ∧ (0[,)+∞)
⊆ ℝ) → 𝑇:𝐴⟶ℝ) |
155 | 2, 153, 154 | sylancl 582 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑇:𝐴⟶ℝ) |
156 | 98, 89 | fssd 6291 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑋:𝐴⟶ℝ) |
157 | | inidm 4046 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
158 | 152, 155,
156, 10, 10, 157 | off 7171 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑇 ∘𝑓 · 𝑋):𝐴⟶ℝ) |
159 | | ax-resscn 10308 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ℝ
⊆ ℂ |
160 | | fss 6290 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑇 ∘𝑓
· 𝑋):𝐴⟶ℝ ∧ ℝ
⊆ ℂ) → (𝑇
∘𝑓 · 𝑋):𝐴⟶ℂ) |
161 | 158, 159,
160 | sylancl 582 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑇 ∘𝑓 · 𝑋):𝐴⟶ℂ) |
162 | 161 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑇 ∘𝑓 · 𝑋):𝐴⟶ℂ) |
163 | 86 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑘 ∪ {𝑐}) ⊆ 𝐴) |
164 | 162, 163 | fssresd 6307 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐})):(𝑘 ∪ {𝑐})⟶ℂ) |
165 | 2 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑇:𝐴⟶(0[,)+∞)) |
166 | 110 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝐴 ∈ Fin) |
167 | | fex 6744 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑇:𝐴⟶(0[,)+∞) ∧ 𝐴 ∈ Fin) → 𝑇 ∈ V) |
168 | 165, 166,
167 | syl2anc 581 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑇 ∈ V) |
169 | 98 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑋:𝐴⟶𝐷) |
170 | | fex 6744 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋:𝐴⟶𝐷 ∧ 𝐴 ∈ Fin) → 𝑋 ∈ V) |
171 | 169, 166,
170 | syl2anc 581 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑋 ∈ V) |
172 | | offres 7422 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑇 ∈ V ∧ 𝑋 ∈ V) → ((𝑇 ∘𝑓
· 𝑋) ↾ (𝑘 ∪ {𝑐})) = ((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
(𝑋 ↾ (𝑘 ∪ {𝑐})))) |
173 | 168, 171,
172 | syl2anc 581 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐})) = ((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
(𝑋 ↾ (𝑘 ∪ {𝑐})))) |
174 | 173 | oveq1d 6919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐})) supp 0) = (((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
(𝑋 ↾ (𝑘 ∪ {𝑐}))) supp 0)) |
175 | 153, 159 | sstri 3835 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0[,)+∞) ⊆ ℂ |
176 | | fss 6290 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑇:𝐴⟶(0[,)+∞) ∧ (0[,)+∞)
⊆ ℂ) → 𝑇:𝐴⟶ℂ) |
177 | 165, 175,
176 | sylancl 582 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑇:𝐴⟶ℂ) |
178 | 177, 163 | fssresd 6307 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑇 ↾ (𝑘 ∪ {𝑐})):(𝑘 ∪ {𝑐})⟶ℂ) |
179 | | eldifi 3958 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ ((𝑘 ∪ {𝑐}) ∖ {𝑐}) → 𝑥 ∈ (𝑘 ∪ {𝑐})) |
180 | 179 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ ((𝑘 ∪ {𝑐}) ∖ {𝑐})) → 𝑥 ∈ (𝑘 ∪ {𝑐})) |
181 | | fvres 6451 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ (𝑘 ∪ {𝑐}) → ((𝑇 ↾ (𝑘 ∪ {𝑐}))‘𝑥) = (𝑇‘𝑥)) |
182 | 180, 181 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ ((𝑘 ∪ {𝑐}) ∖ {𝑐})) → ((𝑇 ↾ (𝑘 ∪ {𝑐}))‘𝑥) = (𝑇‘𝑥)) |
183 | | difun2 4270 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑘 ∪ {𝑐}) ∖ {𝑐}) = (𝑘 ∖ {𝑐}) |
184 | | difss 3963 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∖ {𝑐}) ⊆ 𝑘 |
185 | 183, 184 | eqsstri 3859 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑘 ∪ {𝑐}) ∖ {𝑐}) ⊆ 𝑘 |
186 | 185 | sseli 3822 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ ((𝑘 ∪ {𝑐}) ∖ {𝑐}) → 𝑥 ∈ 𝑘) |
187 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) |
188 | 87 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑘 ⊆ 𝐴) |
189 | 165, 188 | feqresmpt 6496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑇 ↾ 𝑘) = (𝑥 ∈ 𝑘 ↦ (𝑇‘𝑥))) |
190 | 189 | oveq2d 6920 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg (𝑇 ↾ 𝑘)) = (ℂfld
Σg (𝑥 ∈ 𝑘 ↦ (𝑇‘𝑥)))) |
191 | 112 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑘 ∈ Fin) |
192 | 188 | sselda 3826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → 𝑥 ∈ 𝐴) |
193 | 165 | ffvelrnda 6607 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝐴) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
194 | 192, 193 | syldan 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
195 | 175, 194 | sseldi 3824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → (𝑇‘𝑥) ∈ ℂ) |
196 | 191, 195 | gsumfsum 20172 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg (𝑥 ∈ 𝑘 ↦ (𝑇‘𝑥))) = Σ𝑥 ∈ 𝑘 (𝑇‘𝑥)) |
197 | 187, 190,
196 | 3eqtrrd 2865 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → Σ𝑥 ∈ 𝑘 (𝑇‘𝑥) = 0) |
198 | | elrege0 12567 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑇‘𝑥) ∈ (0[,)+∞) ↔ ((𝑇‘𝑥) ∈ ℝ ∧ 0 ≤ (𝑇‘𝑥))) |
199 | 194, 198 | sylib 210 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → ((𝑇‘𝑥) ∈ ℝ ∧ 0 ≤ (𝑇‘𝑥))) |
200 | 199 | simpld 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → (𝑇‘𝑥) ∈ ℝ) |
201 | 199 | simprd 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → 0 ≤ (𝑇‘𝑥)) |
202 | 191, 200,
201 | fsum00 14903 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (Σ𝑥 ∈ 𝑘 (𝑇‘𝑥) = 0 ↔ ∀𝑥 ∈ 𝑘 (𝑇‘𝑥) = 0)) |
203 | 197, 202 | mpbid 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ∀𝑥 ∈ 𝑘 (𝑇‘𝑥) = 0) |
204 | 203 | r19.21bi 3140 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ 𝑘) → (𝑇‘𝑥) = 0) |
205 | 186, 204 | sylan2 588 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ ((𝑘 ∪ {𝑐}) ∖ {𝑐})) → (𝑇‘𝑥) = 0) |
206 | 182, 205 | eqtrd 2860 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ ((𝑘 ∪ {𝑐}) ∖ {𝑐})) → ((𝑇 ↾ (𝑘 ∪ {𝑐}))‘𝑥) = 0) |
207 | 178, 206 | suppss 7589 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ↾ (𝑘 ∪ {𝑐})) supp 0) ⊆ {𝑐}) |
208 | | mul02 10532 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ℂ → (0
· 𝑥) =
0) |
209 | 208 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = 0) |
210 | 89 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝐷 ⊆ ℝ) |
211 | 210, 159 | syl6ss 3838 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝐷 ⊆ ℂ) |
212 | 169, 211 | fssd 6291 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑋:𝐴⟶ℂ) |
213 | 212, 163 | fssresd 6307 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑋 ↾ (𝑘 ∪ {𝑐})):(𝑘 ∪ {𝑐})⟶ℂ) |
214 | 117 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 0 ∈ V) |
215 | 207, 209,
178, 213, 146, 214 | suppssof1 7592 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
(𝑋 ↾ (𝑘 ∪ {𝑐}))) supp 0) ⊆ {𝑐}) |
216 | 174, 215 | eqsstrd 3863 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐})) supp 0) ⊆ {𝑐}) |
217 | 141, 16, 143, 146, 150, 164, 216 | gsumpt 18713 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) = (((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))‘𝑐)) |
218 | | fvres 6451 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ (𝑘 ∪ {𝑐}) → (((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))‘𝑐) = ((𝑇 ∘𝑓 · 𝑋)‘𝑐)) |
219 | 150, 218 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))‘𝑐) = ((𝑇 ∘𝑓 · 𝑋)‘𝑐)) |
220 | 165 | ffnd 6278 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑇 Fn 𝐴) |
221 | 169 | ffnd 6278 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑋 Fn 𝐴) |
222 | 163, 150 | sseldd 3827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝑐 ∈ 𝐴) |
223 | | fnfvof 7170 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑇 Fn 𝐴 ∧ 𝑋 Fn 𝐴) ∧ (𝐴 ∈ Fin ∧ 𝑐 ∈ 𝐴)) → ((𝑇 ∘𝑓 · 𝑋)‘𝑐) = ((𝑇‘𝑐) · (𝑋‘𝑐))) |
224 | 220, 221,
166, 222, 223 | syl22anc 874 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · 𝑋)‘𝑐) = ((𝑇‘𝑐) · (𝑋‘𝑐))) |
225 | 217, 219,
224 | 3eqtrd 2864 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) = ((𝑇‘𝑐) · (𝑋‘𝑐))) |
226 | 141, 16, 143, 146, 150, 178, 207 | gsumpt 18713 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))) = ((𝑇 ↾ (𝑘 ∪ {𝑐}))‘𝑐)) |
227 | | fvres 6451 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ (𝑘 ∪ {𝑐}) → ((𝑇 ↾ (𝑘 ∪ {𝑐}))‘𝑐) = (𝑇‘𝑐)) |
228 | 150, 227 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ↾ (𝑘 ∪ {𝑐}))‘𝑐) = (𝑇‘𝑐)) |
229 | 226, 228 | eqtrd 2860 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))) = (𝑇‘𝑐)) |
230 | 225, 229 | oveq12d 6922 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) = (((𝑇‘𝑐) · (𝑋‘𝑐)) / (𝑇‘𝑐))) |
231 | 212, 222 | ffvelrnd 6608 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑋‘𝑐) ∈ ℂ) |
232 | 177, 222 | ffvelrnd 6608 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑇‘𝑐) ∈ ℂ) |
233 | | simplrr 798 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) |
234 | 233, 229 | breqtrd 4898 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 0 < (𝑇‘𝑐)) |
235 | 234 | gt0ne0d 10915 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑇‘𝑐) ≠ 0) |
236 | 231, 232,
235 | divcan3d 11131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇‘𝑐) · (𝑋‘𝑐)) / (𝑇‘𝑐)) = (𝑋‘𝑐)) |
237 | 230, 236 | eqtrd 2860 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) = (𝑋‘𝑐)) |
238 | 169, 222 | ffvelrnd 6608 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑋‘𝑐) ∈ 𝐷) |
239 | 237, 238 | eqeltrd 2905 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ 𝐷) |
240 | 91 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → 𝐹:𝐷⟶ℝ) |
241 | 240, 238 | ffvelrnd 6608 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹‘(𝑋‘𝑐)) ∈ ℝ) |
242 | 241 | leidd 10917 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹‘(𝑋‘𝑐)) ≤ (𝐹‘(𝑋‘𝑐))) |
243 | 237 | fveq2d 6436 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) = (𝐹‘(𝑋‘𝑐))) |
244 | | fco 6294 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐹:𝐷⟶ℝ ∧ 𝑋:𝐴⟶𝐷) → (𝐹 ∘ 𝑋):𝐴⟶ℝ) |
245 | 91, 98, 244 | syl2anc 581 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐹 ∘ 𝑋):𝐴⟶ℝ) |
246 | 152, 155,
245, 10, 10, 157 | off 7171 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)):𝐴⟶ℝ) |
247 | | fss 6290 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑇 ∘𝑓
· (𝐹 ∘ 𝑋)):𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → (𝑇
∘𝑓 · (𝐹 ∘ 𝑋)):𝐴⟶ℂ) |
248 | 246, 159,
247 | sylancl 582 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)):𝐴⟶ℂ) |
249 | 248 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)):𝐴⟶ℂ) |
250 | 249, 163 | fssresd 6307 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐})):(𝑘 ∪ {𝑐})⟶ℂ) |
251 | 245 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹 ∘ 𝑋):𝐴⟶ℝ) |
252 | | fex 6744 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∘ 𝑋):𝐴⟶ℝ ∧ 𝐴 ∈ Fin) → (𝐹 ∘ 𝑋) ∈ V) |
253 | 251, 166,
252 | syl2anc 581 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹 ∘ 𝑋) ∈ V) |
254 | | offres 7422 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑇 ∈ V ∧ (𝐹 ∘ 𝑋) ∈ V) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐})) = ((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
((𝐹 ∘ 𝑋) ↾ (𝑘 ∪ {𝑐})))) |
255 | 168, 253,
254 | syl2anc 581 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐})) = ((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
((𝐹 ∘ 𝑋) ↾ (𝑘 ∪ {𝑐})))) |
256 | 255 | oveq1d 6919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐})) supp 0) = (((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
((𝐹 ∘ 𝑋) ↾ (𝑘 ∪ {𝑐}))) supp 0)) |
257 | | fss 6290 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∘ 𝑋):𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → (𝐹 ∘
𝑋):𝐴⟶ℂ) |
258 | 251, 159,
257 | sylancl 582 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹 ∘ 𝑋):𝐴⟶ℂ) |
259 | 258, 163 | fssresd 6307 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝐹 ∘ 𝑋) ↾ (𝑘 ∪ {𝑐})):(𝑘 ∪ {𝑐})⟶ℂ) |
260 | 207, 209,
178, 259, 146, 214 | suppssof1 7592 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ↾ (𝑘 ∪ {𝑐})) ∘𝑓 ·
((𝐹 ∘ 𝑋) ↾ (𝑘 ∪ {𝑐}))) supp 0) ⊆ {𝑐}) |
261 | 256, 260 | eqsstrd 3863 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐})) supp 0) ⊆ {𝑐}) |
262 | 141, 16, 143, 146, 150, 250, 261 | gsumpt 18713 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) = (((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))‘𝑐)) |
263 | | fvres 6451 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ (𝑘 ∪ {𝑐}) → (((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))‘𝑐) = ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))‘𝑐)) |
264 | 150, 263 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))‘𝑐) = ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))‘𝑐)) |
265 | 91 | ffnd 6278 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹 Fn 𝐷) |
266 | | fnfco 6305 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹 Fn 𝐷 ∧ 𝑋:𝐴⟶𝐷) → (𝐹 ∘ 𝑋) Fn 𝐴) |
267 | 265, 98, 266 | syl2anc 581 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐹 ∘ 𝑋) Fn 𝐴) |
268 | 267 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹 ∘ 𝑋) Fn 𝐴) |
269 | | fnfvof 7170 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑇 Fn 𝐴 ∧ (𝐹 ∘ 𝑋) Fn 𝐴) ∧ (𝐴 ∈ Fin ∧ 𝑐 ∈ 𝐴)) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))‘𝑐) = ((𝑇‘𝑐) · ((𝐹 ∘ 𝑋)‘𝑐))) |
270 | 220, 268,
166, 222, 269 | syl22anc 874 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))‘𝑐) = ((𝑇‘𝑐) · ((𝐹 ∘ 𝑋)‘𝑐))) |
271 | | fvco3 6521 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑋:𝐴⟶𝐷 ∧ 𝑐 ∈ 𝐴) → ((𝐹 ∘ 𝑋)‘𝑐) = (𝐹‘(𝑋‘𝑐))) |
272 | 169, 222,
271 | syl2anc 581 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝐹 ∘ 𝑋)‘𝑐) = (𝐹‘(𝑋‘𝑐))) |
273 | 272 | oveq2d 6920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇‘𝑐) · ((𝐹 ∘ 𝑋)‘𝑐)) = ((𝑇‘𝑐) · (𝐹‘(𝑋‘𝑐)))) |
274 | 270, 273 | eqtrd 2860 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))‘𝑐) = ((𝑇‘𝑐) · (𝐹‘(𝑋‘𝑐)))) |
275 | 262, 264,
274 | 3eqtrd 2864 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) = ((𝑇‘𝑐) · (𝐹‘(𝑋‘𝑐)))) |
276 | 275, 229 | oveq12d 6922 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) = (((𝑇‘𝑐) · (𝐹‘(𝑋‘𝑐))) / (𝑇‘𝑐))) |
277 | 241 | recnd 10384 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹‘(𝑋‘𝑐)) ∈ ℂ) |
278 | 277, 232,
235 | divcan3d 11131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (((𝑇‘𝑐) · (𝐹‘(𝑋‘𝑐))) / (𝑇‘𝑐)) = (𝐹‘(𝑋‘𝑐))) |
279 | 276, 278 | eqtrd 2860 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) = (𝐹‘(𝑋‘𝑐))) |
280 | 242, 243,
279 | 3brtr4d 4904 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → (𝐹‘((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) |
281 | 239, 280,
137 | sylanbrc 580 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))}) |
282 | 281 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) ∧ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
283 | 121 | simprbi 492 |
. . . . . . . . . . . . . . . 16
⊢
((ℂfld Σg (𝑇 ↾ 𝑘)) ∈ (0[,)+∞) → 0 ≤
(ℂfld Σg (𝑇 ↾ 𝑘))) |
284 | 120, 283 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → 0 ≤ (ℂfld
Σg (𝑇 ↾ 𝑘))) |
285 | | leloe 10442 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ (ℂfld Σg (𝑇 ↾ 𝑘)) ∈ ℝ) → (0 ≤
(ℂfld Σg (𝑇 ↾ 𝑘)) ↔ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∨ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
286 | 80, 123, 285 | sylancr 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (0 ≤ (ℂfld
Σg (𝑇 ↾ 𝑘)) ↔ (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∨ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘))))) |
287 | 284, 286 | mpbid 224 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) ∨ 0 = (ℂfld
Σg (𝑇 ↾ 𝑘)))) |
288 | 140, 282,
287 | mpjaodan 988 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → ((0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
289 | 87, 288 | embantd 59 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → ((𝑘 ⊆ 𝐴 → (0 < (ℂfld
Σg (𝑇 ↾ 𝑘)) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
290 | 85, 289 | syl5bi 234 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) ∧ ((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))) → (((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})) |
291 | 290 | ex 403 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) → (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → (((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))}))) |
292 | 291 | com23 86 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑐 ∈ 𝑘) → (((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))}))) |
293 | 292 | expcom 404 |
. . . . . . . 8
⊢ (¬
𝑐 ∈ 𝑘 → (𝜑 → (((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})))) |
294 | 293 | adantl 475 |
. . . . . . 7
⊢ ((𝑘 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑘) → (𝜑 → (((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))}) → (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})))) |
295 | 294 | a2d 29 |
. . . . . 6
⊢ ((𝑘 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑘) → ((𝜑 → ((𝑘 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝑘))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝑘)) / (ℂfld
Σg (𝑇 ↾ 𝑘)))})) → (𝜑 → (((𝑘 ∪ {𝑐}) ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐})))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ (𝑘 ∪ {𝑐}))) / (ℂfld
Σg (𝑇 ↾ (𝑘 ∪ {𝑐}))))})))) |
296 | 31, 47, 63, 79, 84, 295 | findcard2s 8469 |
. . . . 5
⊢ (𝐴 ∈ Fin → (𝜑 → ((𝐴 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))}))) |
297 | 10, 296 | mpcom 38 |
. . . 4
⊢ (𝜑 → ((𝐴 ⊆ 𝐴 ∧ 0 < (ℂfld
Σg (𝑇 ↾ 𝐴))) → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))})) |
298 | 9, 297 | mpd 15 |
. . 3
⊢ (𝜑 → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))}) |
299 | 158 | ffnd 6278 |
. . . . . 6
⊢ (𝜑 → (𝑇 ∘𝑓 · 𝑋) Fn 𝐴) |
300 | | fnresdm 6232 |
. . . . . 6
⊢ ((𝑇 ∘𝑓
· 𝑋) Fn 𝐴 → ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴) = (𝑇 ∘𝑓 · 𝑋)) |
301 | 299, 300 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴) = (𝑇 ∘𝑓 · 𝑋)) |
302 | 301 | oveq2d 6920 |
. . . 4
⊢ (𝜑 → (ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) = (ℂfld
Σg (𝑇 ∘𝑓 · 𝑋))) |
303 | 302, 6 | oveq12d 6922 |
. . 3
⊢ (𝜑 → ((ℂfld
Σg ((𝑇 ∘𝑓 · 𝑋) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) = ((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇))) |
304 | 3, 267, 10, 10, 157 | offn 7167 |
. . . . . . . 8
⊢ (𝜑 → (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) Fn 𝐴) |
305 | | fnresdm 6232 |
. . . . . . . 8
⊢ ((𝑇 ∘𝑓
· (𝐹 ∘ 𝑋)) Fn 𝐴 → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴) = (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) |
306 | 304, 305 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴) = (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) |
307 | 306 | oveq2d 6920 |
. . . . . 6
⊢ (𝜑 → (ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) = (ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)))) |
308 | 307, 6 | oveq12d 6922 |
. . . . 5
⊢ (𝜑 → ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) = ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇))) |
309 | 308 | breq2d 4884 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴))) ↔ (𝐹‘𝑤) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇)))) |
310 | 309 | rabbidv 3401 |
. . 3
⊢ (𝜑 → {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg ((𝑇 ∘𝑓 · (𝐹 ∘ 𝑋)) ↾ 𝐴)) / (ℂfld
Σg (𝑇 ↾ 𝐴)))} = {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇))}) |
311 | 298, 303,
310 | 3eltr3d 2919 |
. 2
⊢ (𝜑 → ((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇))}) |
312 | | fveq2 6432 |
. . . 4
⊢ (𝑤 = ((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)) → (𝐹‘𝑤) = (𝐹‘((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)))) |
313 | 312 | breq1d 4882 |
. . 3
⊢ (𝑤 = ((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)) → ((𝐹‘𝑤) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇)) ↔ (𝐹‘((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇))) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇)))) |
314 | 313 | elrab 3584 |
. 2
⊢
(((ℂfld Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)) ∈ {𝑤 ∈ 𝐷 ∣ (𝐹‘𝑤) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇))} ↔ (((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)) ∈ 𝐷 ∧ (𝐹‘((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇))) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇)))) |
315 | 311, 314 | sylib 210 |
1
⊢ (𝜑 → (((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇)) ∈ 𝐷 ∧ (𝐹‘((ℂfld
Σg (𝑇 ∘𝑓 · 𝑋)) / (ℂfld
Σg 𝑇))) ≤ ((ℂfld
Σg (𝑇 ∘𝑓 · (𝐹 ∘ 𝑋))) / (ℂfld
Σg 𝑇)))) |