MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tususp Structured version   Visualization version   GIF version

Theorem tususp 24176
Description: A constructed uniform space is an uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Hypothesis
Ref Expression
tuslem.k 𝐾 = (toUnifSp‘𝑈)
Assertion
Ref Expression
tususp (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 ∈ UnifSp)

Proof of Theorem tususp
StepHypRef Expression
1 id 22 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ (UnifOn‘𝑋))
2 tuslem.k . . . 4 𝐾 = (toUnifSp‘𝑈)
32tususs 24174 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSt‘𝐾))
42tusbas 24172 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘𝐾))
54fveq2d 6830 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (UnifOn‘𝑋) = (UnifOn‘(Base‘𝐾)))
61, 3, 53eltr3d 2842 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (UnifSt‘𝐾) ∈ (UnifOn‘(Base‘𝐾)))
72tusunif 24173 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘𝐾))
87fveq2d 6830 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (unifTop‘(UnifSet‘𝐾)))
92tuslem 24171 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))
109simp3d 1144 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopOpen‘𝐾))
117, 3eqtr3d 2766 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (UnifSet‘𝐾) = (UnifSt‘𝐾))
1211fveq2d 6830 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘(UnifSet‘𝐾)) = (unifTop‘(UnifSt‘𝐾)))
138, 10, 123eqtr3d 2772 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (TopOpen‘𝐾) = (unifTop‘(UnifSt‘𝐾)))
14 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
15 eqid 2729 . . 3 (UnifSt‘𝐾) = (UnifSt‘𝐾)
16 eqid 2729 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
1714, 15, 16isusp 24166 . 2 (𝐾 ∈ UnifSp ↔ ((UnifSt‘𝐾) ∈ (UnifOn‘(Base‘𝐾)) ∧ (TopOpen‘𝐾) = (unifTop‘(UnifSt‘𝐾))))
186, 13, 17sylanbrc 583 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 ∈ UnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  Basecbs 17139  UnifSetcunif 17190  TopOpenctopn 17344  UnifOncust 24104  unifTopcutop 24135  UnifStcuss 24158  UnifSpcusp 24159  toUnifSpctus 24160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-tset 17199  df-unif 17203  df-rest 17345  df-topn 17346  df-ust 24105  df-utop 24136  df-uss 24161  df-usp 24162  df-tus 24163
This theorem is referenced by:  cmetcusp  25271
  Copyright terms: Public domain W3C validator