![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tususp | Structured version Visualization version GIF version |
Description: A constructed uniform space is an uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
tuslem.k | ⊢ 𝐾 = (toUnifSp‘𝑈) |
Ref | Expression |
---|---|
tususp | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 ∈ UnifSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ (UnifOn‘𝑋)) | |
2 | tuslem.k | . . . 4 ⊢ 𝐾 = (toUnifSp‘𝑈) | |
3 | 2 | tususs 24095 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSt‘𝐾)) |
4 | 2 | tusbas 24093 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘𝐾)) |
5 | 4 | fveq2d 6895 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (UnifOn‘𝑋) = (UnifOn‘(Base‘𝐾))) |
6 | 1, 3, 5 | 3eltr3d 2846 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (UnifSt‘𝐾) ∈ (UnifOn‘(Base‘𝐾))) |
7 | 2 | tusunif 24094 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘𝐾)) |
8 | 7 | fveq2d 6895 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (unifTop‘(UnifSet‘𝐾))) |
9 | 2 | tuslem 24091 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾))) |
10 | 9 | simp3d 1143 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopOpen‘𝐾)) |
11 | 7, 3 | eqtr3d 2773 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (UnifSet‘𝐾) = (UnifSt‘𝐾)) |
12 | 11 | fveq2d 6895 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘(UnifSet‘𝐾)) = (unifTop‘(UnifSt‘𝐾))) |
13 | 8, 10, 12 | 3eqtr3d 2779 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (TopOpen‘𝐾) = (unifTop‘(UnifSt‘𝐾))) |
14 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
15 | eqid 2731 | . . 3 ⊢ (UnifSt‘𝐾) = (UnifSt‘𝐾) | |
16 | eqid 2731 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
17 | 14, 15, 16 | isusp 24086 | . 2 ⊢ (𝐾 ∈ UnifSp ↔ ((UnifSt‘𝐾) ∈ (UnifOn‘(Base‘𝐾)) ∧ (TopOpen‘𝐾) = (unifTop‘(UnifSt‘𝐾)))) |
18 | 6, 13, 17 | sylanbrc 582 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 ∈ UnifSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 Basecbs 17151 UnifSetcunif 17214 TopOpenctopn 17374 UnifOncust 24024 unifTopcutop 24055 UnifStcuss 24078 UnifSpcusp 24079 toUnifSpctus 24080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-tset 17223 df-unif 17227 df-rest 17375 df-topn 17376 df-ust 24025 df-utop 24056 df-uss 24081 df-usp 24082 df-tus 24083 |
This theorem is referenced by: cmetcusp 25202 |
Copyright terms: Public domain | W3C validator |