MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tususp Structured version   Visualization version   GIF version

Theorem tususp 24302
Description: A constructed uniform space is an uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Hypothesis
Ref Expression
tuslem.k 𝐾 = (toUnifSp‘𝑈)
Assertion
Ref Expression
tususp (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 ∈ UnifSp)

Proof of Theorem tususp
StepHypRef Expression
1 id 22 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ (UnifOn‘𝑋))
2 tuslem.k . . . 4 𝐾 = (toUnifSp‘𝑈)
32tususs 24300 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSt‘𝐾))
42tusbas 24298 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘𝐾))
54fveq2d 6924 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (UnifOn‘𝑋) = (UnifOn‘(Base‘𝐾)))
61, 3, 53eltr3d 2858 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (UnifSt‘𝐾) ∈ (UnifOn‘(Base‘𝐾)))
72tusunif 24299 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘𝐾))
87fveq2d 6924 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (unifTop‘(UnifSet‘𝐾)))
92tuslem 24296 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))
109simp3d 1144 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopOpen‘𝐾))
117, 3eqtr3d 2782 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (UnifSet‘𝐾) = (UnifSt‘𝐾))
1211fveq2d 6924 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘(UnifSet‘𝐾)) = (unifTop‘(UnifSt‘𝐾)))
138, 10, 123eqtr3d 2788 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (TopOpen‘𝐾) = (unifTop‘(UnifSt‘𝐾)))
14 eqid 2740 . . 3 (Base‘𝐾) = (Base‘𝐾)
15 eqid 2740 . . 3 (UnifSt‘𝐾) = (UnifSt‘𝐾)
16 eqid 2740 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
1714, 15, 16isusp 24291 . 2 (𝐾 ∈ UnifSp ↔ ((UnifSt‘𝐾) ∈ (UnifOn‘(Base‘𝐾)) ∧ (TopOpen‘𝐾) = (unifTop‘(UnifSt‘𝐾))))
186, 13, 17sylanbrc 582 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 ∈ UnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  Basecbs 17258  UnifSetcunif 17321  TopOpenctopn 17481  UnifOncust 24229  unifTopcutop 24260  UnifStcuss 24283  UnifSpcusp 24284  toUnifSpctus 24285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-tset 17330  df-unif 17334  df-rest 17482  df-topn 17483  df-ust 24230  df-utop 24261  df-uss 24286  df-usp 24287  df-tus 24288
This theorem is referenced by:  cmetcusp  25407
  Copyright terms: Public domain W3C validator