MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprabs Structured version   Visualization version   GIF version

Theorem lspprabs 19796
Description: Absorption of vector sum into span of pair. (Contributed by NM, 27-Apr-2015.)
Hypotheses
Ref Expression
lspprabs.v 𝑉 = (Base‘𝑊)
lspprabs.p + = (+g𝑊)
lspprabs.n 𝑁 = (LSpan‘𝑊)
lspprabs.w (𝜑𝑊 ∈ LMod)
lspprabs.x (𝜑𝑋𝑉)
lspprabs.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspprabs (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌}))

Proof of Theorem lspprabs
StepHypRef Expression
1 lspprabs.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
2 eqid 2818 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
32lsssssubg 19659 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
41, 3syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
5 lspprabs.x . . . . . . 7 (𝜑𝑋𝑉)
6 lspprabs.v . . . . . . . 8 𝑉 = (Base‘𝑊)
7 lspprabs.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
86, 2, 7lspsncl 19678 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
91, 5, 8syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
104, 9sseldd 3965 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
11 lspprabs.y . . . . . . 7 (𝜑𝑌𝑉)
126, 2, 7lspsncl 19678 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
131, 11, 12syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
144, 13sseldd 3965 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
15 eqid 2818 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
1615lsmub1 18711 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
1710, 14, 16syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
182, 15lsmcl 19784 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
191, 9, 13, 18syl3anc 1363 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
206, 7lspsnid 19694 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
211, 5, 20syl2anc 584 . . . . . 6 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
226, 7lspsnid 19694 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
231, 11, 22syl2anc 584 . . . . . 6 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
24 lspprabs.p . . . . . . 7 + = (+g𝑊)
2524, 15lsmelvali 18704 . . . . . 6 ((((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) ∧ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2610, 14, 21, 23, 25syl22anc 834 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
272, 7, 1, 19, 26lspsnel5a 19697 . . . 4 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
286, 24lmodvacl 19577 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
291, 5, 11, 28syl3anc 1363 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
306, 2, 7lspsncl 19678 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑊))
311, 29, 30syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑊))
324, 31sseldd 3965 . . . . 5 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊))
334, 19sseldd 3965 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (SubGrp‘𝑊))
3415lsmlub 18719 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊) ∧ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (SubGrp‘𝑊)) → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∧ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))))
3510, 32, 33, 34syl3anc 1363 . . . 4 (𝜑 → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∧ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))))
3617, 27, 35mpbi2and 708 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
3715lsmub1 18711 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
3810, 32, 37syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
392, 15lsmcl 19784 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (LSubSp‘𝑊))
401, 9, 31, 39syl3anc 1363 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (LSubSp‘𝑊))
41 eqid 2818 . . . . . . 7 (-g𝑊) = (-g𝑊)
426, 7lspsnid 19694 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → (𝑋 + 𝑌) ∈ (𝑁‘{(𝑋 + 𝑌)}))
431, 29, 42syl2anc 584 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ (𝑁‘{(𝑋 + 𝑌)}))
4441, 15, 32, 10, 43, 21lsmelvalmi 18706 . . . . . 6 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ ((𝑁‘{(𝑋 + 𝑌)})(LSSum‘𝑊)(𝑁‘{𝑋})))
45 lmodabl 19610 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
461, 45syl 17 . . . . . . 7 (𝜑𝑊 ∈ Abel)
476, 24, 41ablpncan2 18865 . . . . . . 7 ((𝑊 ∈ Abel ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
4846, 5, 11, 47syl3anc 1363 . . . . . 6 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
4915lsmcom 18907 . . . . . . 7 ((𝑊 ∈ Abel ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → ((𝑁‘{(𝑋 + 𝑌)})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
5046, 32, 10, 49syl3anc 1363 . . . . . 6 (𝜑 → ((𝑁‘{(𝑋 + 𝑌)})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
5144, 48, 503eltr3d 2924 . . . . 5 (𝜑𝑌 ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
522, 7, 1, 40, 51lspsnel5a 19697 . . . 4 (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
534, 40sseldd 3965 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (SubGrp‘𝑊))
5415lsmlub 18719 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (SubGrp‘𝑊)) → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∧ (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))))
5510, 14, 53, 54syl3anc 1363 . . . 4 (𝜑 → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∧ (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))))
5638, 52, 55mpbi2and 708 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
5736, 56eqssd 3981 . 2 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
586, 7, 15, 1, 5, 29lsmpr 19790 . 2 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
596, 7, 15, 1, 5, 11lsmpr 19790 . 2 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
6057, 58, 593eqtr4d 2863 1 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wss 3933  {csn 4557  {cpr 4559  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  -gcsg 18043  SubGrpcsubg 18211  LSSumclsm 18688  Abelcabl 18836  LModclmod 19563  LSubSpclss 19632  LSpanclspn 19672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-cntz 18385  df-lsm 18690  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-lmod 19565  df-lss 19633  df-lsp 19673
This theorem is referenced by:  lspabs2  19821  lspindp4  19838  mapdindp4  38739
  Copyright terms: Public domain W3C validator