MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprabs Structured version   Visualization version   GIF version

Theorem lspprabs 20556
Description: Absorption of vector sum into span of pair. (Contributed by NM, 27-Apr-2015.)
Hypotheses
Ref Expression
lspprabs.v 𝑉 = (Base‘𝑊)
lspprabs.p + = (+g𝑊)
lspprabs.n 𝑁 = (LSpan‘𝑊)
lspprabs.w (𝜑𝑊 ∈ LMod)
lspprabs.x (𝜑𝑋𝑉)
lspprabs.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspprabs (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌}))

Proof of Theorem lspprabs
StepHypRef Expression
1 lspprabs.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
2 eqid 2736 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
32lsssssubg 20419 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
41, 3syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
5 lspprabs.x . . . . . . 7 (𝜑𝑋𝑉)
6 lspprabs.v . . . . . . . 8 𝑉 = (Base‘𝑊)
7 lspprabs.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
86, 2, 7lspsncl 20438 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
91, 5, 8syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
104, 9sseldd 3945 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
11 lspprabs.y . . . . . . 7 (𝜑𝑌𝑉)
126, 2, 7lspsncl 20438 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
131, 11, 12syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
144, 13sseldd 3945 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
15 eqid 2736 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
1615lsmub1 19439 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
1710, 14, 16syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
182, 15lsmcl 20544 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
191, 9, 13, 18syl3anc 1371 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
206, 7lspsnid 20454 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
211, 5, 20syl2anc 584 . . . . . 6 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
226, 7lspsnid 20454 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
231, 11, 22syl2anc 584 . . . . . 6 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
24 lspprabs.p . . . . . . 7 + = (+g𝑊)
2524, 15lsmelvali 19432 . . . . . 6 ((((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) ∧ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2610, 14, 21, 23, 25syl22anc 837 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
272, 7, 1, 19, 26lspsnel5a 20457 . . . 4 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
286, 24lmodvacl 20336 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
291, 5, 11, 28syl3anc 1371 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
306, 2, 7lspsncl 20438 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑊))
311, 29, 30syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑊))
324, 31sseldd 3945 . . . . 5 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊))
334, 19sseldd 3945 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (SubGrp‘𝑊))
3415lsmlub 19446 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊) ∧ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (SubGrp‘𝑊)) → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∧ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))))
3510, 32, 33, 34syl3anc 1371 . . . 4 (𝜑 → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∧ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))))
3617, 27, 35mpbi2and 710 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
3715lsmub1 19439 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
3810, 32, 37syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
392, 15lsmcl 20544 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (LSubSp‘𝑊))
401, 9, 31, 39syl3anc 1371 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (LSubSp‘𝑊))
41 eqid 2736 . . . . . . 7 (-g𝑊) = (-g𝑊)
426, 7lspsnid 20454 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → (𝑋 + 𝑌) ∈ (𝑁‘{(𝑋 + 𝑌)}))
431, 29, 42syl2anc 584 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ (𝑁‘{(𝑋 + 𝑌)}))
4441, 15, 32, 10, 43, 21lsmelvalmi 19434 . . . . . 6 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ ((𝑁‘{(𝑋 + 𝑌)})(LSSum‘𝑊)(𝑁‘{𝑋})))
45 lmodabl 20369 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
461, 45syl 17 . . . . . . 7 (𝜑𝑊 ∈ Abel)
476, 24, 41ablpncan2 19594 . . . . . . 7 ((𝑊 ∈ Abel ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
4846, 5, 11, 47syl3anc 1371 . . . . . 6 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
4915lsmcom 19636 . . . . . . 7 ((𝑊 ∈ Abel ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → ((𝑁‘{(𝑋 + 𝑌)})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
5046, 32, 10, 49syl3anc 1371 . . . . . 6 (𝜑 → ((𝑁‘{(𝑋 + 𝑌)})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
5144, 48, 503eltr3d 2852 . . . . 5 (𝜑𝑌 ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
522, 7, 1, 40, 51lspsnel5a 20457 . . . 4 (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
534, 40sseldd 3945 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (SubGrp‘𝑊))
5415lsmlub 19446 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (SubGrp‘𝑊)) → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∧ (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))))
5510, 14, 53, 54syl3anc 1371 . . . 4 (𝜑 → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∧ (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))))
5638, 52, 55mpbi2and 710 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
5736, 56eqssd 3961 . 2 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
586, 7, 15, 1, 5, 29lsmpr 20550 . 2 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
596, 7, 15, 1, 5, 11lsmpr 20550 . 2 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
6057, 58, 593eqtr4d 2786 1 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wss 3910  {csn 4586  {cpr 4588  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  -gcsg 18750  SubGrpcsubg 18922  LSSumclsm 19416  Abelcabl 19563  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lss 20393  df-lsp 20433
This theorem is referenced by:  lspabs2  20581  lspindp4  20598  mapdindp4  40186
  Copyright terms: Public domain W3C validator