MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprabs Structured version   Visualization version   GIF version

Theorem lspprabs 20698
Description: Absorption of vector sum into span of pair. (Contributed by NM, 27-Apr-2015.)
Hypotheses
Ref Expression
lspprabs.v 𝑉 = (Baseβ€˜π‘Š)
lspprabs.p + = (+gβ€˜π‘Š)
lspprabs.n 𝑁 = (LSpanβ€˜π‘Š)
lspprabs.w (πœ‘ β†’ π‘Š ∈ LMod)
lspprabs.x (πœ‘ β†’ 𝑋 ∈ 𝑉)
lspprabs.y (πœ‘ β†’ π‘Œ ∈ 𝑉)
Assertion
Ref Expression
lspprabs (πœ‘ β†’ (π‘β€˜{𝑋, (𝑋 + π‘Œ)}) = (π‘β€˜{𝑋, π‘Œ}))

Proof of Theorem lspprabs
StepHypRef Expression
1 lspprabs.w . . . . . . 7 (πœ‘ β†’ π‘Š ∈ LMod)
2 eqid 2732 . . . . . . . 8 (LSubSpβ€˜π‘Š) = (LSubSpβ€˜π‘Š)
32lsssssubg 20561 . . . . . . 7 (π‘Š ∈ LMod β†’ (LSubSpβ€˜π‘Š) βŠ† (SubGrpβ€˜π‘Š))
41, 3syl 17 . . . . . 6 (πœ‘ β†’ (LSubSpβ€˜π‘Š) βŠ† (SubGrpβ€˜π‘Š))
5 lspprabs.x . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ 𝑉)
6 lspprabs.v . . . . . . . 8 𝑉 = (Baseβ€˜π‘Š)
7 lspprabs.n . . . . . . . 8 𝑁 = (LSpanβ€˜π‘Š)
86, 2, 7lspsncl 20580 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉) β†’ (π‘β€˜{𝑋}) ∈ (LSubSpβ€˜π‘Š))
91, 5, 8syl2anc 584 . . . . . 6 (πœ‘ β†’ (π‘β€˜{𝑋}) ∈ (LSubSpβ€˜π‘Š))
104, 9sseldd 3982 . . . . 5 (πœ‘ β†’ (π‘β€˜{𝑋}) ∈ (SubGrpβ€˜π‘Š))
11 lspprabs.y . . . . . . 7 (πœ‘ β†’ π‘Œ ∈ 𝑉)
126, 2, 7lspsncl 20580 . . . . . . 7 ((π‘Š ∈ LMod ∧ π‘Œ ∈ 𝑉) β†’ (π‘β€˜{π‘Œ}) ∈ (LSubSpβ€˜π‘Š))
131, 11, 12syl2anc 584 . . . . . 6 (πœ‘ β†’ (π‘β€˜{π‘Œ}) ∈ (LSubSpβ€˜π‘Š))
144, 13sseldd 3982 . . . . 5 (πœ‘ β†’ (π‘β€˜{π‘Œ}) ∈ (SubGrpβ€˜π‘Š))
15 eqid 2732 . . . . . 6 (LSSumβ€˜π‘Š) = (LSSumβ€˜π‘Š)
1615lsmub1 19519 . . . . 5 (((π‘β€˜{𝑋}) ∈ (SubGrpβ€˜π‘Š) ∧ (π‘β€˜{π‘Œ}) ∈ (SubGrpβ€˜π‘Š)) β†’ (π‘β€˜{𝑋}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})))
1710, 14, 16syl2anc 584 . . . 4 (πœ‘ β†’ (π‘β€˜{𝑋}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})))
182, 15lsmcl 20686 . . . . . 6 ((π‘Š ∈ LMod ∧ (π‘β€˜{𝑋}) ∈ (LSubSpβ€˜π‘Š) ∧ (π‘β€˜{π‘Œ}) ∈ (LSubSpβ€˜π‘Š)) β†’ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})) ∈ (LSubSpβ€˜π‘Š))
191, 9, 13, 18syl3anc 1371 . . . . 5 (πœ‘ β†’ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})) ∈ (LSubSpβ€˜π‘Š))
206, 7lspsnid 20596 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 ∈ (π‘β€˜{𝑋}))
211, 5, 20syl2anc 584 . . . . . 6 (πœ‘ β†’ 𝑋 ∈ (π‘β€˜{𝑋}))
226, 7lspsnid 20596 . . . . . . 7 ((π‘Š ∈ LMod ∧ π‘Œ ∈ 𝑉) β†’ π‘Œ ∈ (π‘β€˜{π‘Œ}))
231, 11, 22syl2anc 584 . . . . . 6 (πœ‘ β†’ π‘Œ ∈ (π‘β€˜{π‘Œ}))
24 lspprabs.p . . . . . . 7 + = (+gβ€˜π‘Š)
2524, 15lsmelvali 19512 . . . . . 6 ((((π‘β€˜{𝑋}) ∈ (SubGrpβ€˜π‘Š) ∧ (π‘β€˜{π‘Œ}) ∈ (SubGrpβ€˜π‘Š)) ∧ (𝑋 ∈ (π‘β€˜{𝑋}) ∧ π‘Œ ∈ (π‘β€˜{π‘Œ}))) β†’ (𝑋 + π‘Œ) ∈ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})))
2610, 14, 21, 23, 25syl22anc 837 . . . . 5 (πœ‘ β†’ (𝑋 + π‘Œ) ∈ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})))
272, 7, 1, 19, 26lspsnel5a 20599 . . . 4 (πœ‘ β†’ (π‘β€˜{(𝑋 + π‘Œ)}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})))
286, 24lmodvacl 20478 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + π‘Œ) ∈ 𝑉)
291, 5, 11, 28syl3anc 1371 . . . . . . 7 (πœ‘ β†’ (𝑋 + π‘Œ) ∈ 𝑉)
306, 2, 7lspsncl 20580 . . . . . . 7 ((π‘Š ∈ LMod ∧ (𝑋 + π‘Œ) ∈ 𝑉) β†’ (π‘β€˜{(𝑋 + π‘Œ)}) ∈ (LSubSpβ€˜π‘Š))
311, 29, 30syl2anc 584 . . . . . 6 (πœ‘ β†’ (π‘β€˜{(𝑋 + π‘Œ)}) ∈ (LSubSpβ€˜π‘Š))
324, 31sseldd 3982 . . . . 5 (πœ‘ β†’ (π‘β€˜{(𝑋 + π‘Œ)}) ∈ (SubGrpβ€˜π‘Š))
334, 19sseldd 3982 . . . . 5 (πœ‘ β†’ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})) ∈ (SubGrpβ€˜π‘Š))
3415lsmlub 19526 . . . . 5 (((π‘β€˜{𝑋}) ∈ (SubGrpβ€˜π‘Š) ∧ (π‘β€˜{(𝑋 + π‘Œ)}) ∈ (SubGrpβ€˜π‘Š) ∧ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})) ∈ (SubGrpβ€˜π‘Š)) β†’ (((π‘β€˜{𝑋}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})) ∧ (π‘β€˜{(𝑋 + π‘Œ)}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ}))) ↔ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ}))))
3510, 32, 33, 34syl3anc 1371 . . . 4 (πœ‘ β†’ (((π‘β€˜{𝑋}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})) ∧ (π‘β€˜{(𝑋 + π‘Œ)}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ}))) ↔ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ}))))
3617, 27, 35mpbi2and 710 . . 3 (πœ‘ β†’ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})))
3715lsmub1 19519 . . . . 5 (((π‘β€˜{𝑋}) ∈ (SubGrpβ€˜π‘Š) ∧ (π‘β€˜{(𝑋 + π‘Œ)}) ∈ (SubGrpβ€˜π‘Š)) β†’ (π‘β€˜{𝑋}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})))
3810, 32, 37syl2anc 584 . . . 4 (πœ‘ β†’ (π‘β€˜{𝑋}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})))
392, 15lsmcl 20686 . . . . . 6 ((π‘Š ∈ LMod ∧ (π‘β€˜{𝑋}) ∈ (LSubSpβ€˜π‘Š) ∧ (π‘β€˜{(𝑋 + π‘Œ)}) ∈ (LSubSpβ€˜π‘Š)) β†’ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})) ∈ (LSubSpβ€˜π‘Š))
401, 9, 31, 39syl3anc 1371 . . . . 5 (πœ‘ β†’ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})) ∈ (LSubSpβ€˜π‘Š))
41 eqid 2732 . . . . . . 7 (-gβ€˜π‘Š) = (-gβ€˜π‘Š)
426, 7lspsnid 20596 . . . . . . . 8 ((π‘Š ∈ LMod ∧ (𝑋 + π‘Œ) ∈ 𝑉) β†’ (𝑋 + π‘Œ) ∈ (π‘β€˜{(𝑋 + π‘Œ)}))
431, 29, 42syl2anc 584 . . . . . . 7 (πœ‘ β†’ (𝑋 + π‘Œ) ∈ (π‘β€˜{(𝑋 + π‘Œ)}))
4441, 15, 32, 10, 43, 21lsmelvalmi 19514 . . . . . 6 (πœ‘ β†’ ((𝑋 + π‘Œ)(-gβ€˜π‘Š)𝑋) ∈ ((π‘β€˜{(𝑋 + π‘Œ)})(LSSumβ€˜π‘Š)(π‘β€˜{𝑋})))
45 lmodabl 20511 . . . . . . . 8 (π‘Š ∈ LMod β†’ π‘Š ∈ Abel)
461, 45syl 17 . . . . . . 7 (πœ‘ β†’ π‘Š ∈ Abel)
476, 24, 41ablpncan2 19677 . . . . . . 7 ((π‘Š ∈ Abel ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + π‘Œ)(-gβ€˜π‘Š)𝑋) = π‘Œ)
4846, 5, 11, 47syl3anc 1371 . . . . . 6 (πœ‘ β†’ ((𝑋 + π‘Œ)(-gβ€˜π‘Š)𝑋) = π‘Œ)
4915lsmcom 19720 . . . . . . 7 ((π‘Š ∈ Abel ∧ (π‘β€˜{(𝑋 + π‘Œ)}) ∈ (SubGrpβ€˜π‘Š) ∧ (π‘β€˜{𝑋}) ∈ (SubGrpβ€˜π‘Š)) β†’ ((π‘β€˜{(𝑋 + π‘Œ)})(LSSumβ€˜π‘Š)(π‘β€˜{𝑋})) = ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})))
5046, 32, 10, 49syl3anc 1371 . . . . . 6 (πœ‘ β†’ ((π‘β€˜{(𝑋 + π‘Œ)})(LSSumβ€˜π‘Š)(π‘β€˜{𝑋})) = ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})))
5144, 48, 503eltr3d 2847 . . . . 5 (πœ‘ β†’ π‘Œ ∈ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})))
522, 7, 1, 40, 51lspsnel5a 20599 . . . 4 (πœ‘ β†’ (π‘β€˜{π‘Œ}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})))
534, 40sseldd 3982 . . . . 5 (πœ‘ β†’ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})) ∈ (SubGrpβ€˜π‘Š))
5415lsmlub 19526 . . . . 5 (((π‘β€˜{𝑋}) ∈ (SubGrpβ€˜π‘Š) ∧ (π‘β€˜{π‘Œ}) ∈ (SubGrpβ€˜π‘Š) ∧ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})) ∈ (SubGrpβ€˜π‘Š)) β†’ (((π‘β€˜{𝑋}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})) ∧ (π‘β€˜{π‘Œ}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)}))) ↔ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)}))))
5510, 14, 53, 54syl3anc 1371 . . . 4 (πœ‘ β†’ (((π‘β€˜{𝑋}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})) ∧ (π‘β€˜{π‘Œ}) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)}))) ↔ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)}))))
5638, 52, 55mpbi2and 710 . . 3 (πœ‘ β†’ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})) βŠ† ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})))
5736, 56eqssd 3998 . 2 (πœ‘ β†’ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})) = ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})))
586, 7, 15, 1, 5, 29lsmpr 20692 . 2 (πœ‘ β†’ (π‘β€˜{𝑋, (𝑋 + π‘Œ)}) = ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{(𝑋 + π‘Œ)})))
596, 7, 15, 1, 5, 11lsmpr 20692 . 2 (πœ‘ β†’ (π‘β€˜{𝑋, π‘Œ}) = ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘Œ})))
6057, 58, 593eqtr4d 2782 1 (πœ‘ β†’ (π‘β€˜{𝑋, (𝑋 + π‘Œ)}) = (π‘β€˜{𝑋, π‘Œ}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βŠ† wss 3947  {csn 4627  {cpr 4629  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  -gcsg 18817  SubGrpcsubg 18994  LSSumclsm 19496  Abelcabl 19643  LModclmod 20463  LSubSpclss 20534  LSpanclspn 20574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-cntz 19175  df-lsm 19498  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-lmod 20465  df-lss 20535  df-lsp 20575
This theorem is referenced by:  lspabs2  20725  lspindp4  20742  mapdindp4  40582
  Copyright terms: Public domain W3C validator