MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprabs Structured version   Visualization version   GIF version

Theorem lspprabs 21094
Description: Absorption of vector sum into span of pair. (Contributed by NM, 27-Apr-2015.)
Hypotheses
Ref Expression
lspprabs.v 𝑉 = (Base‘𝑊)
lspprabs.p + = (+g𝑊)
lspprabs.n 𝑁 = (LSpan‘𝑊)
lspprabs.w (𝜑𝑊 ∈ LMod)
lspprabs.x (𝜑𝑋𝑉)
lspprabs.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspprabs (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌}))

Proof of Theorem lspprabs
StepHypRef Expression
1 lspprabs.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
2 eqid 2737 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
32lsssssubg 20956 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
41, 3syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
5 lspprabs.x . . . . . . 7 (𝜑𝑋𝑉)
6 lspprabs.v . . . . . . . 8 𝑉 = (Base‘𝑊)
7 lspprabs.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
86, 2, 7lspsncl 20975 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
91, 5, 8syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
104, 9sseldd 3984 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
11 lspprabs.y . . . . . . 7 (𝜑𝑌𝑉)
126, 2, 7lspsncl 20975 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
131, 11, 12syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
144, 13sseldd 3984 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
15 eqid 2737 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
1615lsmub1 19675 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
1710, 14, 16syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
182, 15lsmcl 21082 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
191, 9, 13, 18syl3anc 1373 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
206, 7lspsnid 20991 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
211, 5, 20syl2anc 584 . . . . . 6 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
226, 7lspsnid 20991 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
231, 11, 22syl2anc 584 . . . . . 6 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
24 lspprabs.p . . . . . . 7 + = (+g𝑊)
2524, 15lsmelvali 19668 . . . . . 6 ((((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) ∧ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2610, 14, 21, 23, 25syl22anc 839 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
272, 7, 1, 19, 26ellspsn5 20994 . . . 4 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
286, 24lmodvacl 20873 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
291, 5, 11, 28syl3anc 1373 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
306, 2, 7lspsncl 20975 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑊))
311, 29, 30syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑊))
324, 31sseldd 3984 . . . . 5 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊))
334, 19sseldd 3984 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (SubGrp‘𝑊))
3415lsmlub 19682 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊) ∧ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (SubGrp‘𝑊)) → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∧ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))))
3510, 32, 33, 34syl3anc 1373 . . . 4 (𝜑 → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∧ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))))
3617, 27, 35mpbi2and 712 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
3715lsmub1 19675 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
3810, 32, 37syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
392, 15lsmcl 21082 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (LSubSp‘𝑊))
401, 9, 31, 39syl3anc 1373 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (LSubSp‘𝑊))
41 eqid 2737 . . . . . . 7 (-g𝑊) = (-g𝑊)
426, 7lspsnid 20991 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → (𝑋 + 𝑌) ∈ (𝑁‘{(𝑋 + 𝑌)}))
431, 29, 42syl2anc 584 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ (𝑁‘{(𝑋 + 𝑌)}))
4441, 15, 32, 10, 43, 21lsmelvalmi 19670 . . . . . 6 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ ((𝑁‘{(𝑋 + 𝑌)})(LSSum‘𝑊)(𝑁‘{𝑋})))
45 lmodabl 20907 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
461, 45syl 17 . . . . . . 7 (𝜑𝑊 ∈ Abel)
476, 24, 41ablpncan2 19833 . . . . . . 7 ((𝑊 ∈ Abel ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
4846, 5, 11, 47syl3anc 1373 . . . . . 6 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
4915lsmcom 19876 . . . . . . 7 ((𝑊 ∈ Abel ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → ((𝑁‘{(𝑋 + 𝑌)})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
5046, 32, 10, 49syl3anc 1373 . . . . . 6 (𝜑 → ((𝑁‘{(𝑋 + 𝑌)})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
5144, 48, 503eltr3d 2855 . . . . 5 (𝜑𝑌 ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
522, 7, 1, 40, 51ellspsn5 20994 . . . 4 (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
534, 40sseldd 3984 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (SubGrp‘𝑊))
5415lsmlub 19682 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∈ (SubGrp‘𝑊)) → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∧ (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))))
5510, 14, 53, 54syl3anc 1373 . . . 4 (𝜑 → (((𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) ∧ (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))))
5638, 52, 55mpbi2and 712 . . 3 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
5736, 56eqssd 4001 . 2 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
586, 7, 15, 1, 5, 29lsmpr 21088 . 2 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
596, 7, 15, 1, 5, 11lsmpr 21088 . 2 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
6057, 58, 593eqtr4d 2787 1 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3951  {csn 4626  {cpr 4628  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  -gcsg 18953  SubGrpcsubg 19138  LSSumclsm 19652  Abelcabl 19799  LModclmod 20858  LSubSpclss 20929  LSpanclspn 20969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930  df-lsp 20970
This theorem is referenced by:  lspabs2  21122  lspindp4  21139  mapdindp4  41725
  Copyright terms: Public domain W3C validator