MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lincmb01cmp Structured version   Visualization version   GIF version

Theorem lincmb01cmp 13395
Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.)
Assertion
Ref Expression
lincmb01cmp (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵))

Proof of Theorem lincmb01cmp
StepHypRef Expression
1 simpr 484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ (0[,]1))
2 0red 11115 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 0 ∈ ℝ)
3 1red 11113 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 1 ∈ ℝ)
4 elicc01 13366 . . . . . . . 8 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
54simp1bi 1145 . . . . . . 7 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
65adantl 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ ℝ)
7 difrp 12930 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
87biimp3a 1471 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
98adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ+)
10 eqid 2731 . . . . . . 7 (0 · (𝐵𝐴)) = (0 · (𝐵𝐴))
11 eqid 2731 . . . . . . 7 (1 · (𝐵𝐴)) = (1 · (𝐵𝐴))
1210, 11iccdil 13390 . . . . . 6 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ+)) → (𝑇 ∈ (0[,]1) ↔ (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
132, 3, 6, 9, 12syl22anc 838 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 ∈ (0[,]1) ↔ (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
141, 13mpbid 232 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))))
15 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ ℝ)
16 simpl1 1192 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ ℝ)
1715, 16resubcld 11545 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ)
1817recnd 11140 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℂ)
1918mul02d 11311 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (0 · (𝐵𝐴)) = 0)
2018mullidd 11130 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 · (𝐵𝐴)) = (𝐵𝐴))
2119, 20oveq12d 7364 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))) = (0[,](𝐵𝐴)))
2214, 21eleqtrd 2833 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)))
236, 17remulcld 11142 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ ℝ)
24 eqid 2731 . . . . 5 (0 + 𝐴) = (0 + 𝐴)
25 eqid 2731 . . . . 5 ((𝐵𝐴) + 𝐴) = ((𝐵𝐴) + 𝐴)
2624, 25iccshftr 13386 . . . 4 (((0 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ) ∧ ((𝑇 · (𝐵𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ)) → ((𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)) ↔ ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴))))
272, 17, 23, 16, 26syl22anc 838 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)) ↔ ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴))))
2822, 27mpbid 232 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴)))
296recnd 11140 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ ℂ)
3015recnd 11140 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ ℂ)
3129, 30mulcld 11132 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐵) ∈ ℂ)
3216recnd 11140 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
3329, 32mulcld 11132 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐴) ∈ ℂ)
3431, 33, 32subadd23d 11494 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((𝑇 · 𝐵) − (𝑇 · 𝐴)) + 𝐴) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
3529, 30, 32subdid 11573 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
3635oveq1d 7361 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) = (((𝑇 · 𝐵) − (𝑇 · 𝐴)) + 𝐴))
37 1re 11112 . . . . . . . 8 1 ∈ ℝ
38 resubcl 11425 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
3937, 6, 38sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 − 𝑇) ∈ ℝ)
4039, 16remulcld 11142 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) ∈ ℝ)
4140recnd 11140 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) ∈ ℂ)
4241, 31addcomd 11315 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + ((1 − 𝑇) · 𝐴)))
43 1cnd 11107 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 1 ∈ ℂ)
4443, 29, 32subdird 11574 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴)))
4532mullidd 11130 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 · 𝐴) = 𝐴)
4645oveq1d 7361 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴)))
4744, 46eqtrd 2766 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴)))
4847oveq2d 7362 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · 𝐵) + ((1 − 𝑇) · 𝐴)) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
4942, 48eqtrd 2766 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
5034, 36, 493eqtr4d 2776 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
5132addlidd 11314 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (0 + 𝐴) = 𝐴)
5230, 32npcand 11476 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝐵𝐴) + 𝐴) = 𝐵)
5351, 52oveq12d 7364 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴)) = (𝐴[,]𝐵))
5428, 50, 533eltr3d 2845 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2111   class class class wbr 5091  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  +crp 12890  [,]cicc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-rp 12891  df-icc 13252
This theorem is referenced by:  iccf1o  13396  icccvx  24876  efcvx  26387  logccv  26600  cvxcl  26923
  Copyright terms: Public domain W3C validator