Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lincmb01cmp Structured version   Visualization version   GIF version

Theorem lincmb01cmp 12696
 Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.)
Assertion
Ref Expression
lincmb01cmp (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵))

Proof of Theorem lincmb01cmp
StepHypRef Expression
1 simpr 477 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ (0[,]1))
2 0red 10442 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 0 ∈ ℝ)
3 1red 10439 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 1 ∈ ℝ)
4 elicc01 12669 . . . . . . . 8 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
54simp1bi 1126 . . . . . . 7 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
65adantl 474 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ ℝ)
7 difrp 12243 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
87biimp3a 1449 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
98adantr 473 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ+)
10 eqid 2773 . . . . . . 7 (0 · (𝐵𝐴)) = (0 · (𝐵𝐴))
11 eqid 2773 . . . . . . 7 (1 · (𝐵𝐴)) = (1 · (𝐵𝐴))
1210, 11iccdil 12691 . . . . . 6 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ+)) → (𝑇 ∈ (0[,]1) ↔ (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
132, 3, 6, 9, 12syl22anc 827 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 ∈ (0[,]1) ↔ (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
141, 13mpbid 224 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))))
15 simpl2 1173 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ ℝ)
16 simpl1 1172 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ ℝ)
1715, 16resubcld 10868 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ)
1817recnd 10467 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℂ)
1918mul02d 10637 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (0 · (𝐵𝐴)) = 0)
2018mulid2d 10457 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 · (𝐵𝐴)) = (𝐵𝐴))
2119, 20oveq12d 6993 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))) = (0[,](𝐵𝐴)))
2214, 21eleqtrd 2863 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)))
236, 17remulcld 10469 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ ℝ)
24 eqid 2773 . . . . 5 (0 + 𝐴) = (0 + 𝐴)
25 eqid 2773 . . . . 5 ((𝐵𝐴) + 𝐴) = ((𝐵𝐴) + 𝐴)
2624, 25iccshftr 12687 . . . 4 (((0 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ) ∧ ((𝑇 · (𝐵𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ)) → ((𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)) ↔ ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴))))
272, 17, 23, 16, 26syl22anc 827 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)) ↔ ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴))))
2822, 27mpbid 224 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴)))
296recnd 10467 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ ℂ)
3015recnd 10467 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ ℂ)
3129, 30mulcld 10459 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐵) ∈ ℂ)
3216recnd 10467 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
3329, 32mulcld 10459 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐴) ∈ ℂ)
3431, 33, 32subadd23d 10819 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((𝑇 · 𝐵) − (𝑇 · 𝐴)) + 𝐴) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
3529, 30, 32subdid 10896 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
3635oveq1d 6990 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) = (((𝑇 · 𝐵) − (𝑇 · 𝐴)) + 𝐴))
37 1re 10438 . . . . . . . 8 1 ∈ ℝ
38 resubcl 10750 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
3937, 6, 38sylancr 579 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 − 𝑇) ∈ ℝ)
4039, 16remulcld 10469 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) ∈ ℝ)
4140recnd 10467 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) ∈ ℂ)
4241, 31addcomd 10641 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + ((1 − 𝑇) · 𝐴)))
43 1cnd 10433 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 1 ∈ ℂ)
4443, 29, 32subdird 10897 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴)))
4532mulid2d 10457 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 · 𝐴) = 𝐴)
4645oveq1d 6990 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴)))
4744, 46eqtrd 2809 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴)))
4847oveq2d 6991 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · 𝐵) + ((1 − 𝑇) · 𝐴)) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
4942, 48eqtrd 2809 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
5034, 36, 493eqtr4d 2819 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
5132addid2d 10640 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (0 + 𝐴) = 𝐴)
5230, 32npcand 10801 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝐵𝐴) + 𝐴) = 𝐵)
5351, 52oveq12d 6993 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴)) = (𝐴[,]𝐵))
5428, 50, 533eltr3d 2875 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 387   ∧ w3a 1069   ∈ wcel 2051   class class class wbr 4926  (class class class)co 6975  ℝcr 10333  0cc0 10334  1c1 10335   + caddc 10337   · cmul 10339   < clt 10473   ≤ cle 10474   − cmin 10669  ℝ+crp 12203  [,]cicc 12556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-br 4927  df-opab 4989  df-mpt 5006  df-id 5309  df-po 5323  df-so 5324  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-rp 12204  df-icc 12560 This theorem is referenced by:  iccf1o  12697  icccvx  23273  efcvx  24756  logccv  24963  cvxcl  25280
 Copyright terms: Public domain W3C validator