| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgsubmefmndALT | Structured version Visualization version GIF version | ||
| Description: The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. Alternate proof based on issubmndb 18732 and not on injsubmefmnd 18824 and sursubmefmnd 18823. (Contributed by AV, 18-Feb-2024.) (Revised by AV, 30-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| symgsubmefmndALT.m | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
| symgsubmefmndALT.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
| symgsubmefmndALT.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| symgsubmefmndALT | ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgsubmefmndALT.m | . . 3 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
| 2 | 1 | efmndmnd 18816 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd) |
| 3 | symgsubmefmndALT.g | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 4 | symgsubmefmndALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 3, 4, 1 | symgressbas 19312 | . . 3 ⊢ 𝐺 = (𝑀 ↾s 𝐵) |
| 6 | 3 | symggrp 19330 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| 7 | grpmnd 18872 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
| 9 | 5, 8 | eqeltrrid 2833 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑀 ↾s 𝐵) ∈ Mnd) |
| 10 | 3 | idresperm 19316 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
| 11 | 1 | efmndid 18815 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝑀)) |
| 12 | 4 | eqcomi 2738 | . . . . 5 ⊢ (Base‘𝐺) = 𝐵 |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) = 𝐵) |
| 14 | 10, 11, 13 | 3eltr3d 2842 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (0g‘𝑀) ∈ 𝐵) |
| 15 | 3, 4 | symgbasmap 19307 | . . . . 5 ⊢ (𝑓 ∈ 𝐵 → 𝑓 ∈ (𝐴 ↑m 𝐴)) |
| 16 | 15 | ssriv 3950 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ↑m 𝐴) |
| 17 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 18 | 1, 17 | efmndbas 18798 | . . . 4 ⊢ (Base‘𝑀) = (𝐴 ↑m 𝐴) |
| 19 | 16, 18 | sseqtrri 3996 | . . 3 ⊢ 𝐵 ⊆ (Base‘𝑀) |
| 20 | 14, 19 | jctil 519 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵)) |
| 21 | eqid 2729 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 22 | 17, 21 | issubmndb 18732 | . 2 ⊢ (𝐵 ∈ (SubMnd‘𝑀) ↔ ((𝑀 ∈ Mnd ∧ (𝑀 ↾s 𝐵) ∈ Mnd) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵))) |
| 23 | 2, 9, 20, 22 | syl21anbrc 1345 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 I cid 5532 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Basecbs 17179 ↾s cress 17200 0gc0g 17402 Mndcmnd 18661 SubMndcsubmnd 18709 EndoFMndcefmnd 18795 Grpcgrp 18865 SymGrpcsymg 19299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-tset 17239 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-efmnd 18796 df-grp 18868 df-symg 19300 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |