MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgsubmefmndALT Structured version   Visualization version   GIF version

Theorem symgsubmefmndALT 19317
Description: The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. Alternate proof based on issubmndb 18715 and not on injsubmefmnd 18807 and sursubmefmnd 18806. (Contributed by AV, 18-Feb-2024.) (Revised by AV, 30-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
symgsubmefmndALT.m 𝑀 = (EndoFMnd‘𝐴)
symgsubmefmndALT.g 𝐺 = (SymGrp‘𝐴)
symgsubmefmndALT.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
symgsubmefmndALT (𝐴𝑉𝐵 ∈ (SubMnd‘𝑀))

Proof of Theorem symgsubmefmndALT
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 symgsubmefmndALT.m . . 3 𝑀 = (EndoFMnd‘𝐴)
21efmndmnd 18799 . 2 (𝐴𝑉𝑀 ∈ Mnd)
3 symgsubmefmndALT.g . . . 4 𝐺 = (SymGrp‘𝐴)
4 symgsubmefmndALT.b . . . 4 𝐵 = (Base‘𝐺)
53, 4, 1symgressbas 19296 . . 3 𝐺 = (𝑀s 𝐵)
63symggrp 19314 . . . 4 (𝐴𝑉𝐺 ∈ Grp)
7 grpmnd 18855 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
86, 7syl 17 . . 3 (𝐴𝑉𝐺 ∈ Mnd)
95, 8eqeltrrid 2838 . 2 (𝐴𝑉 → (𝑀s 𝐵) ∈ Mnd)
103idresperm 19300 . . . 4 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
111efmndid 18798 . . . 4 (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝑀))
124eqcomi 2742 . . . . 5 (Base‘𝐺) = 𝐵
1312a1i 11 . . . 4 (𝐴𝑉 → (Base‘𝐺) = 𝐵)
1410, 11, 133eltr3d 2847 . . 3 (𝐴𝑉 → (0g𝑀) ∈ 𝐵)
153, 4symgbasmap 19291 . . . . 5 (𝑓𝐵𝑓 ∈ (𝐴m 𝐴))
1615ssriv 3934 . . . 4 𝐵 ⊆ (𝐴m 𝐴)
17 eqid 2733 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
181, 17efmndbas 18781 . . . 4 (Base‘𝑀) = (𝐴m 𝐴)
1916, 18sseqtrri 3980 . . 3 𝐵 ⊆ (Base‘𝑀)
2014, 19jctil 519 . 2 (𝐴𝑉 → (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵))
21 eqid 2733 . . 3 (0g𝑀) = (0g𝑀)
2217, 21issubmndb 18715 . 2 (𝐵 ∈ (SubMnd‘𝑀) ↔ ((𝑀 ∈ Mnd ∧ (𝑀s 𝐵) ∈ Mnd) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵)))
232, 9, 20, 22syl21anbrc 1345 1 (𝐴𝑉𝐵 ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wss 3898   I cid 5513  cres 5621  cfv 6486  (class class class)co 7352  m cmap 8756  Basecbs 17122  s cress 17143  0gc0g 17345  Mndcmnd 18644  SubMndcsubmnd 18692  EndoFMndcefmnd 18778  Grpcgrp 18848  SymGrpcsymg 19283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-tset 17182  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-efmnd 18779  df-grp 18851  df-symg 19284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator