| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgsubmefmndALT | Structured version Visualization version GIF version | ||
| Description: The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. Alternate proof based on issubmndb 18788 and not on injsubmefmnd 18880 and sursubmefmnd 18879. (Contributed by AV, 18-Feb-2024.) (Revised by AV, 30-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| symgsubmefmndALT.m | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
| symgsubmefmndALT.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
| symgsubmefmndALT.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| symgsubmefmndALT | ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgsubmefmndALT.m | . . 3 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
| 2 | 1 | efmndmnd 18872 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd) |
| 3 | symgsubmefmndALT.g | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 4 | symgsubmefmndALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 3, 4, 1 | symgressbas 19368 | . . 3 ⊢ 𝐺 = (𝑀 ↾s 𝐵) |
| 6 | 3 | symggrp 19386 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| 7 | grpmnd 18928 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
| 9 | 5, 8 | eqeltrrid 2840 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑀 ↾s 𝐵) ∈ Mnd) |
| 10 | 3 | idresperm 19372 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
| 11 | 1 | efmndid 18871 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝑀)) |
| 12 | 4 | eqcomi 2745 | . . . . 5 ⊢ (Base‘𝐺) = 𝐵 |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) = 𝐵) |
| 14 | 10, 11, 13 | 3eltr3d 2849 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (0g‘𝑀) ∈ 𝐵) |
| 15 | 3, 4 | symgbasmap 19363 | . . . . 5 ⊢ (𝑓 ∈ 𝐵 → 𝑓 ∈ (𝐴 ↑m 𝐴)) |
| 16 | 15 | ssriv 3967 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ↑m 𝐴) |
| 17 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 18 | 1, 17 | efmndbas 18854 | . . . 4 ⊢ (Base‘𝑀) = (𝐴 ↑m 𝐴) |
| 19 | 16, 18 | sseqtrri 4013 | . . 3 ⊢ 𝐵 ⊆ (Base‘𝑀) |
| 20 | 14, 19 | jctil 519 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵)) |
| 21 | eqid 2736 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 22 | 17, 21 | issubmndb 18788 | . 2 ⊢ (𝐵 ∈ (SubMnd‘𝑀) ↔ ((𝑀 ∈ Mnd ∧ (𝑀 ↾s 𝐵) ∈ Mnd) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵))) |
| 23 | 2, 9, 20, 22 | syl21anbrc 1345 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 I cid 5552 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 Basecbs 17233 ↾s cress 17256 0gc0g 17458 Mndcmnd 18717 SubMndcsubmnd 18765 EndoFMndcefmnd 18851 Grpcgrp 18921 SymGrpcsymg 19355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-tset 17295 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-efmnd 18852 df-grp 18924 df-symg 19356 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |