MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgsubmefmndALT Structured version   Visualization version   GIF version

Theorem symgsubmefmndALT 19422
Description: The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. Alternate proof based on issubmndb 18819 and not on injsubmefmnd 18911 and sursubmefmnd 18910. (Contributed by AV, 18-Feb-2024.) (Revised by AV, 30-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
symgsubmefmndALT.m 𝑀 = (EndoFMnd‘𝐴)
symgsubmefmndALT.g 𝐺 = (SymGrp‘𝐴)
symgsubmefmndALT.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
symgsubmefmndALT (𝐴𝑉𝐵 ∈ (SubMnd‘𝑀))

Proof of Theorem symgsubmefmndALT
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 symgsubmefmndALT.m . . 3 𝑀 = (EndoFMnd‘𝐴)
21efmndmnd 18903 . 2 (𝐴𝑉𝑀 ∈ Mnd)
3 symgsubmefmndALT.g . . . 4 𝐺 = (SymGrp‘𝐴)
4 symgsubmefmndALT.b . . . 4 𝐵 = (Base‘𝐺)
53, 4, 1symgressbas 19400 . . 3 𝐺 = (𝑀s 𝐵)
63symggrp 19419 . . . 4 (𝐴𝑉𝐺 ∈ Grp)
7 grpmnd 18959 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
86, 7syl 17 . . 3 (𝐴𝑉𝐺 ∈ Mnd)
95, 8eqeltrrid 2845 . 2 (𝐴𝑉 → (𝑀s 𝐵) ∈ Mnd)
103idresperm 19404 . . . 4 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
111efmndid 18902 . . . 4 (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝑀))
124eqcomi 2745 . . . . 5 (Base‘𝐺) = 𝐵
1312a1i 11 . . . 4 (𝐴𝑉 → (Base‘𝐺) = 𝐵)
1410, 11, 133eltr3d 2854 . . 3 (𝐴𝑉 → (0g𝑀) ∈ 𝐵)
153, 4symgbasmap 19395 . . . . 5 (𝑓𝐵𝑓 ∈ (𝐴m 𝐴))
1615ssriv 3986 . . . 4 𝐵 ⊆ (𝐴m 𝐴)
17 eqid 2736 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
181, 17efmndbas 18885 . . . 4 (Base‘𝑀) = (𝐴m 𝐴)
1916, 18sseqtrri 4032 . . 3 𝐵 ⊆ (Base‘𝑀)
2014, 19jctil 519 . 2 (𝐴𝑉 → (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵))
21 eqid 2736 . . 3 (0g𝑀) = (0g𝑀)
2217, 21issubmndb 18819 . 2 (𝐵 ∈ (SubMnd‘𝑀) ↔ ((𝑀 ∈ Mnd ∧ (𝑀s 𝐵) ∈ Mnd) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝐵)))
232, 9, 20, 22syl21anbrc 1344 1 (𝐴𝑉𝐵 ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wss 3950   I cid 5576  cres 5686  cfv 6560  (class class class)co 7432  m cmap 8867  Basecbs 17248  s cress 17275  0gc0g 17485  Mndcmnd 18748  SubMndcsubmnd 18796  EndoFMndcefmnd 18882  Grpcgrp 18952  SymGrpcsymg 19387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-tset 17317  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-efmnd 18883  df-grp 18955  df-symg 19388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator