| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgsubmefmndALT | Structured version Visualization version GIF version | ||
| Description: The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. Alternate proof based on issubmndb 18713 and not on injsubmefmnd 18805 and sursubmefmnd 18804. (Contributed by AV, 18-Feb-2024.) (Revised by AV, 30-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| symgsubmefmndALT.m | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
| symgsubmefmndALT.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
| symgsubmefmndALT.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| symgsubmefmndALT | ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgsubmefmndALT.m | . . 3 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
| 2 | 1 | efmndmnd 18797 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd) |
| 3 | symgsubmefmndALT.g | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 4 | symgsubmefmndALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 3, 4, 1 | symgressbas 19295 | . . 3 ⊢ 𝐺 = (𝑀 ↾s 𝐵) |
| 6 | 3 | symggrp 19313 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| 7 | grpmnd 18853 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
| 9 | 5, 8 | eqeltrrid 2836 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑀 ↾s 𝐵) ∈ Mnd) |
| 10 | 3 | idresperm 19299 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
| 11 | 1 | efmndid 18796 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝑀)) |
| 12 | 4 | eqcomi 2740 | . . . . 5 ⊢ (Base‘𝐺) = 𝐵 |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) = 𝐵) |
| 14 | 10, 11, 13 | 3eltr3d 2845 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (0g‘𝑀) ∈ 𝐵) |
| 15 | 3, 4 | symgbasmap 19290 | . . . . 5 ⊢ (𝑓 ∈ 𝐵 → 𝑓 ∈ (𝐴 ↑m 𝐴)) |
| 16 | 15 | ssriv 3938 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ↑m 𝐴) |
| 17 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 18 | 1, 17 | efmndbas 18779 | . . . 4 ⊢ (Base‘𝑀) = (𝐴 ↑m 𝐴) |
| 19 | 16, 18 | sseqtrri 3984 | . . 3 ⊢ 𝐵 ⊆ (Base‘𝑀) |
| 20 | 14, 19 | jctil 519 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵)) |
| 21 | eqid 2731 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 22 | 17, 21 | issubmndb 18713 | . 2 ⊢ (𝐵 ∈ (SubMnd‘𝑀) ↔ ((𝑀 ∈ Mnd ∧ (𝑀 ↾s 𝐵) ∈ Mnd) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵))) |
| 23 | 2, 9, 20, 22 | syl21anbrc 1345 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 I cid 5510 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Basecbs 17120 ↾s cress 17141 0gc0g 17343 Mndcmnd 18642 SubMndcsubmnd 18690 EndoFMndcefmnd 18776 Grpcgrp 18846 SymGrpcsymg 19282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-tset 17180 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-symg 19283 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |