Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symgsubmefmndALT | Structured version Visualization version GIF version |
Description: The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. Alternate proof based on issubmndb 18359 and not on injsubmefmnd 18451 and sursubmefmnd 18450. (Contributed by AV, 18-Feb-2024.) (Revised by AV, 30-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
symgsubmefmndALT.m | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
symgsubmefmndALT.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgsubmefmndALT.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
symgsubmefmndALT | ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgsubmefmndALT.m | . . 3 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
2 | 1 | efmndmnd 18443 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd) |
3 | symgsubmefmndALT.g | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
4 | symgsubmefmndALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 3, 4, 1 | symgressbas 18904 | . . 3 ⊢ 𝐺 = (𝑀 ↾s 𝐵) |
6 | 3 | symggrp 18923 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
7 | grpmnd 18499 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
9 | 5, 8 | eqeltrrid 2844 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑀 ↾s 𝐵) ∈ Mnd) |
10 | 3 | idresperm 18908 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
11 | 1 | efmndid 18442 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝑀)) |
12 | 4 | eqcomi 2747 | . . . . 5 ⊢ (Base‘𝐺) = 𝐵 |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) = 𝐵) |
14 | 10, 11, 13 | 3eltr3d 2853 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (0g‘𝑀) ∈ 𝐵) |
15 | 3, 4 | symgbasmap 18899 | . . . . 5 ⊢ (𝑓 ∈ 𝐵 → 𝑓 ∈ (𝐴 ↑m 𝐴)) |
16 | 15 | ssriv 3921 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ↑m 𝐴) |
17 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
18 | 1, 17 | efmndbas 18425 | . . . 4 ⊢ (Base‘𝑀) = (𝐴 ↑m 𝐴) |
19 | 16, 18 | sseqtrri 3954 | . . 3 ⊢ 𝐵 ⊆ (Base‘𝑀) |
20 | 14, 19 | jctil 519 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵)) |
21 | eqid 2738 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
22 | 17, 21 | issubmndb 18359 | . 2 ⊢ (𝐵 ∈ (SubMnd‘𝑀) ↔ ((𝑀 ∈ Mnd ∧ (𝑀 ↾s 𝐵) ∈ Mnd) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵))) |
23 | 2, 9, 20, 22 | syl21anbrc 1342 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 I cid 5479 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Basecbs 16840 ↾s cress 16867 0gc0g 17067 Mndcmnd 18300 SubMndcsubmnd 18344 EndoFMndcefmnd 18422 Grpcgrp 18492 SymGrpcsymg 18889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-efmnd 18423 df-grp 18495 df-symg 18890 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |