Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocopn Structured version   Visualization version   GIF version

Theorem iocopn 45559
Description: A left-open right-closed interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iocopn.a (𝜑𝐴 ∈ ℝ*)
iocopn.c (𝜑𝐶 ∈ ℝ*)
iocopn.b (𝜑𝐵 ∈ ℝ)
iocopn.k 𝐾 = (topGen‘ran (,))
iocopn.j 𝐽 = (𝐾t (𝐴(,]𝐵))
iocopn.alec (𝜑𝐴𝐶)
iocopn.6 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iocopn (𝜑 → (𝐶(,]𝐵) ∈ 𝐽)

Proof of Theorem iocopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iocopn.k . . . . 5 𝐾 = (topGen‘ran (,))
2 retop 24674 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2827 . . . 4 𝐾 ∈ Top
43a1i 11 . . 3 (𝜑𝐾 ∈ Top)
5 ovexd 7381 . . 3 (𝜑 → (𝐴(,]𝐵) ∈ V)
6 iooretop 24678 . . . . 5 (𝐶(,)+∞) ∈ (topGen‘ran (,))
76, 1eleqtrri 2830 . . . 4 (𝐶(,)+∞) ∈ 𝐾
87a1i 11 . . 3 (𝜑 → (𝐶(,)+∞) ∈ 𝐾)
9 elrestr 17329 . . 3 ((𝐾 ∈ Top ∧ (𝐴(,]𝐵) ∈ V ∧ (𝐶(,)+∞) ∈ 𝐾) → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ (𝐾t (𝐴(,]𝐵)))
104, 5, 8, 9syl3anc 1373 . 2 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ (𝐾t (𝐴(,]𝐵)))
11 iocopn.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
1211adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 ∈ ℝ*)
13 iocopn.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
1413rexrd 11159 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
1514adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐵 ∈ ℝ*)
16 elinel1 4151 . . . . . . . 8 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
17 elioore 13272 . . . . . . . 8 (𝑥 ∈ (𝐶(,)+∞) → 𝑥 ∈ ℝ)
1816, 17syl 17 . . . . . . 7 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
1918rexrd 11159 . . . . . 6 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ*)
2019adantl 481 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ ℝ*)
21 pnfxr 11163 . . . . . . 7 +∞ ∈ ℝ*
2221a1i 11 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → +∞ ∈ ℝ*)
2316adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,)+∞))
24 ioogtlb 45534 . . . . . 6 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐶(,)+∞)) → 𝐶 < 𝑥)
2512, 22, 23, 24syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 < 𝑥)
26 iocopn.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
2726adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐴 ∈ ℝ*)
28 elinel2 4152 . . . . . . 7 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
2928adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐴(,]𝐵))
30 iocleub 45542 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴(,]𝐵)) → 𝑥𝐵)
3127, 15, 29, 30syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥𝐵)
3212, 15, 20, 25, 31eliocd 45546 . . . 4 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,]𝐵))
3311adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ*)
3421a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → +∞ ∈ ℝ*)
35 iocopn.6 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
36 iocssre 13324 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶(,]𝐵) ⊆ ℝ)
3711, 35, 36syl2anc 584 . . . . . . 7 (𝜑 → (𝐶(,]𝐵) ⊆ ℝ)
3837sselda 3934 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ)
3914adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐵 ∈ ℝ*)
40 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,]𝐵))
41 iocgtlb 45541 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
4233, 39, 40, 41syl3anc 1373 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
4338ltpnfd 13017 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 < +∞)
4433, 34, 38, 42, 43eliood 45537 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
4526adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ*)
4638rexrd 11159 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ*)
47 iocopn.alec . . . . . . . 8 (𝜑𝐴𝐶)
4847adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴𝐶)
4945, 33, 46, 48, 42xrlelttrd 13056 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 < 𝑥)
50 iocleub 45542 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
5133, 39, 40, 50syl3anc 1373 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
5245, 39, 46, 49, 51eliocd 45546 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
5344, 52elind 4150 . . . 4 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
5432, 53impbida 800 . . 3 (𝜑 → (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ↔ 𝑥 ∈ (𝐶(,]𝐵)))
5554eqrdv 2729 . 2 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) = (𝐶(,]𝐵))
56 iocopn.j . . . 4 𝐽 = (𝐾t (𝐴(,]𝐵))
5756eqcomi 2740 . . 3 (𝐾t (𝐴(,]𝐵)) = 𝐽
5857a1i 11 . 2 (𝜑 → (𝐾t (𝐴(,]𝐵)) = 𝐽)
5910, 55, 583eltr3d 2845 1 (𝜑 → (𝐶(,]𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cin 3901  wss 3902   class class class wbr 5091  ran crn 5617  cfv 6481  (class class class)co 7346  cr 11002  +∞cpnf 11140  *cxr 11142   < clt 11143  cle 11144  (,)cioo 13242  (,]cioc 13243  t crest 17321  topGenctg 17338  Topctop 22806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-ioo 13246  df-ioc 13247  df-rest 17323  df-topgen 17344  df-top 22807  df-bases 22859
This theorem is referenced by:  fouriersw  46268
  Copyright terms: Public domain W3C validator