Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocopn Structured version   Visualization version   GIF version

Theorem iocopn 45473
Description: A left-open right-closed interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iocopn.a (𝜑𝐴 ∈ ℝ*)
iocopn.c (𝜑𝐶 ∈ ℝ*)
iocopn.b (𝜑𝐵 ∈ ℝ)
iocopn.k 𝐾 = (topGen‘ran (,))
iocopn.j 𝐽 = (𝐾t (𝐴(,]𝐵))
iocopn.alec (𝜑𝐴𝐶)
iocopn.6 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iocopn (𝜑 → (𝐶(,]𝐵) ∈ 𝐽)

Proof of Theorem iocopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iocopn.k . . . . 5 𝐾 = (topGen‘ran (,))
2 retop 24798 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2835 . . . 4 𝐾 ∈ Top
43a1i 11 . . 3 (𝜑𝐾 ∈ Top)
5 ovexd 7466 . . 3 (𝜑 → (𝐴(,]𝐵) ∈ V)
6 iooretop 24802 . . . . 5 (𝐶(,)+∞) ∈ (topGen‘ran (,))
76, 1eleqtrri 2838 . . . 4 (𝐶(,)+∞) ∈ 𝐾
87a1i 11 . . 3 (𝜑 → (𝐶(,)+∞) ∈ 𝐾)
9 elrestr 17475 . . 3 ((𝐾 ∈ Top ∧ (𝐴(,]𝐵) ∈ V ∧ (𝐶(,)+∞) ∈ 𝐾) → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ (𝐾t (𝐴(,]𝐵)))
104, 5, 8, 9syl3anc 1370 . 2 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ (𝐾t (𝐴(,]𝐵)))
11 iocopn.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
1211adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 ∈ ℝ*)
13 iocopn.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
1413rexrd 11309 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
1514adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐵 ∈ ℝ*)
16 elinel1 4211 . . . . . . . 8 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
17 elioore 13414 . . . . . . . 8 (𝑥 ∈ (𝐶(,)+∞) → 𝑥 ∈ ℝ)
1816, 17syl 17 . . . . . . 7 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
1918rexrd 11309 . . . . . 6 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ*)
2019adantl 481 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ ℝ*)
21 pnfxr 11313 . . . . . . 7 +∞ ∈ ℝ*
2221a1i 11 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → +∞ ∈ ℝ*)
2316adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,)+∞))
24 ioogtlb 45448 . . . . . 6 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐶(,)+∞)) → 𝐶 < 𝑥)
2512, 22, 23, 24syl3anc 1370 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 < 𝑥)
26 iocopn.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
2726adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐴 ∈ ℝ*)
28 elinel2 4212 . . . . . . 7 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
2928adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐴(,]𝐵))
30 iocleub 45456 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴(,]𝐵)) → 𝑥𝐵)
3127, 15, 29, 30syl3anc 1370 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥𝐵)
3212, 15, 20, 25, 31eliocd 45460 . . . 4 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,]𝐵))
3311adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ*)
3421a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → +∞ ∈ ℝ*)
35 iocopn.6 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
36 iocssre 13464 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶(,]𝐵) ⊆ ℝ)
3711, 35, 36syl2anc 584 . . . . . . 7 (𝜑 → (𝐶(,]𝐵) ⊆ ℝ)
3837sselda 3995 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ)
3914adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐵 ∈ ℝ*)
40 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,]𝐵))
41 iocgtlb 45455 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
4233, 39, 40, 41syl3anc 1370 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
4338ltpnfd 13161 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 < +∞)
4433, 34, 38, 42, 43eliood 45451 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
4526adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ*)
4638rexrd 11309 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ*)
47 iocopn.alec . . . . . . . 8 (𝜑𝐴𝐶)
4847adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴𝐶)
4945, 33, 46, 48, 42xrlelttrd 13199 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 < 𝑥)
50 iocleub 45456 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
5133, 39, 40, 50syl3anc 1370 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
5245, 39, 46, 49, 51eliocd 45460 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
5344, 52elind 4210 . . . 4 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
5432, 53impbida 801 . . 3 (𝜑 → (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ↔ 𝑥 ∈ (𝐶(,]𝐵)))
5554eqrdv 2733 . 2 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) = (𝐶(,]𝐵))
56 iocopn.j . . . 4 𝐽 = (𝐾t (𝐴(,]𝐵))
5756eqcomi 2744 . . 3 (𝐾t (𝐴(,]𝐵)) = 𝐽
5857a1i 11 . 2 (𝜑 → (𝐾t (𝐴(,]𝐵)) = 𝐽)
5910, 55, 583eltr3d 2853 1 (𝜑 → (𝐶(,]𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cin 3962  wss 3963   class class class wbr 5148  ran crn 5690  cfv 6563  (class class class)co 7431  cr 11152  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  (,)cioo 13384  (,]cioc 13385  t crest 17467  topGenctg 17484  Topctop 22915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-ioo 13388  df-ioc 13389  df-rest 17469  df-topgen 17490  df-top 22916  df-bases 22969
This theorem is referenced by:  fouriersw  46187
  Copyright terms: Public domain W3C validator