Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocopn Structured version   Visualization version   GIF version

Theorem iocopn 45549
Description: A left-open right-closed interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iocopn.a (𝜑𝐴 ∈ ℝ*)
iocopn.c (𝜑𝐶 ∈ ℝ*)
iocopn.b (𝜑𝐵 ∈ ℝ)
iocopn.k 𝐾 = (topGen‘ran (,))
iocopn.j 𝐽 = (𝐾t (𝐴(,]𝐵))
iocopn.alec (𝜑𝐴𝐶)
iocopn.6 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iocopn (𝜑 → (𝐶(,]𝐵) ∈ 𝐽)

Proof of Theorem iocopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iocopn.k . . . . 5 𝐾 = (topGen‘ran (,))
2 retop 24700 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2830 . . . 4 𝐾 ∈ Top
43a1i 11 . . 3 (𝜑𝐾 ∈ Top)
5 ovexd 7440 . . 3 (𝜑 → (𝐴(,]𝐵) ∈ V)
6 iooretop 24704 . . . . 5 (𝐶(,)+∞) ∈ (topGen‘ran (,))
76, 1eleqtrri 2833 . . . 4 (𝐶(,)+∞) ∈ 𝐾
87a1i 11 . . 3 (𝜑 → (𝐶(,)+∞) ∈ 𝐾)
9 elrestr 17442 . . 3 ((𝐾 ∈ Top ∧ (𝐴(,]𝐵) ∈ V ∧ (𝐶(,)+∞) ∈ 𝐾) → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ (𝐾t (𝐴(,]𝐵)))
104, 5, 8, 9syl3anc 1373 . 2 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ (𝐾t (𝐴(,]𝐵)))
11 iocopn.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
1211adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 ∈ ℝ*)
13 iocopn.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
1413rexrd 11285 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
1514adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐵 ∈ ℝ*)
16 elinel1 4176 . . . . . . . 8 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
17 elioore 13392 . . . . . . . 8 (𝑥 ∈ (𝐶(,)+∞) → 𝑥 ∈ ℝ)
1816, 17syl 17 . . . . . . 7 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
1918rexrd 11285 . . . . . 6 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ*)
2019adantl 481 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ ℝ*)
21 pnfxr 11289 . . . . . . 7 +∞ ∈ ℝ*
2221a1i 11 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → +∞ ∈ ℝ*)
2316adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,)+∞))
24 ioogtlb 45524 . . . . . 6 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐶(,)+∞)) → 𝐶 < 𝑥)
2512, 22, 23, 24syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 < 𝑥)
26 iocopn.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
2726adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐴 ∈ ℝ*)
28 elinel2 4177 . . . . . . 7 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
2928adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐴(,]𝐵))
30 iocleub 45532 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴(,]𝐵)) → 𝑥𝐵)
3127, 15, 29, 30syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥𝐵)
3212, 15, 20, 25, 31eliocd 45536 . . . 4 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,]𝐵))
3311adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ*)
3421a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → +∞ ∈ ℝ*)
35 iocopn.6 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
36 iocssre 13444 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶(,]𝐵) ⊆ ℝ)
3711, 35, 36syl2anc 584 . . . . . . 7 (𝜑 → (𝐶(,]𝐵) ⊆ ℝ)
3837sselda 3958 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ)
3914adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐵 ∈ ℝ*)
40 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,]𝐵))
41 iocgtlb 45531 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
4233, 39, 40, 41syl3anc 1373 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
4338ltpnfd 13137 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 < +∞)
4433, 34, 38, 42, 43eliood 45527 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
4526adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ*)
4638rexrd 11285 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ*)
47 iocopn.alec . . . . . . . 8 (𝜑𝐴𝐶)
4847adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴𝐶)
4945, 33, 46, 48, 42xrlelttrd 13176 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 < 𝑥)
50 iocleub 45532 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
5133, 39, 40, 50syl3anc 1373 . . . . . 6 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
5245, 39, 46, 49, 51eliocd 45536 . . . . 5 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
5344, 52elind 4175 . . . 4 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
5432, 53impbida 800 . . 3 (𝜑 → (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ↔ 𝑥 ∈ (𝐶(,]𝐵)))
5554eqrdv 2733 . 2 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) = (𝐶(,]𝐵))
56 iocopn.j . . . 4 𝐽 = (𝐾t (𝐴(,]𝐵))
5756eqcomi 2744 . . 3 (𝐾t (𝐴(,]𝐵)) = 𝐽
5857a1i 11 . 2 (𝜑 → (𝐾t (𝐴(,]𝐵)) = 𝐽)
5910, 55, 583eltr3d 2848 1 (𝜑 → (𝐶(,]𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  wss 3926   class class class wbr 5119  ran crn 5655  cfv 6531  (class class class)co 7405  cr 11128  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  (,)cioo 13362  (,]cioc 13363  t crest 17434  topGenctg 17451  Topctop 22831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-ioo 13366  df-ioc 13367  df-rest 17436  df-topgen 17457  df-top 22832  df-bases 22884
This theorem is referenced by:  fouriersw  46260
  Copyright terms: Public domain W3C validator