Step | Hyp | Ref
| Expression |
1 | | cnmpt2res.10 |
. . 3
β’ (π β (π₯ β π, π¦ β π β¦ π΄) β ((π½ Γt π) Cn πΏ)) |
2 | | cnmpt1res.5 |
. . . . 5
β’ (π β π β π) |
3 | | cnmpt2res.9 |
. . . . 5
β’ (π β π β π) |
4 | | xpss12 5691 |
. . . . 5
β’ ((π β π β§ π β π) β (π Γ π) β (π Γ π)) |
5 | 2, 3, 4 | syl2anc 584 |
. . . 4
β’ (π β (π Γ π) β (π Γ π)) |
6 | | cnmpt1res.3 |
. . . . . 6
β’ (π β π½ β (TopOnβπ)) |
7 | | cnmpt2res.8 |
. . . . . 6
β’ (π β π β (TopOnβπ)) |
8 | | txtopon 23094 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ π β (TopOnβπ)) β (π½ Γt π) β (TopOnβ(π Γ π))) |
9 | 6, 7, 8 | syl2anc 584 |
. . . . 5
β’ (π β (π½ Γt π) β (TopOnβ(π Γ π))) |
10 | | toponuni 22415 |
. . . . 5
β’ ((π½ Γt π) β (TopOnβ(π Γ π)) β (π Γ π) = βͺ (π½ Γt π)) |
11 | 9, 10 | syl 17 |
. . . 4
β’ (π β (π Γ π) = βͺ (π½ Γt π)) |
12 | 5, 11 | sseqtrd 4022 |
. . 3
β’ (π β (π Γ π) β βͺ
(π½ Γt
π)) |
13 | | eqid 2732 |
. . . 4
β’ βͺ (π½
Γt π) =
βͺ (π½ Γt π) |
14 | 13 | cnrest 22788 |
. . 3
β’ (((π₯ β π, π¦ β π β¦ π΄) β ((π½ Γt π) Cn πΏ) β§ (π Γ π) β βͺ
(π½ Γt
π)) β ((π₯ β π, π¦ β π β¦ π΄) βΎ (π Γ π)) β (((π½ Γt π) βΎt (π Γ π)) Cn πΏ)) |
15 | 1, 12, 14 | syl2anc 584 |
. 2
β’ (π β ((π₯ β π, π¦ β π β¦ π΄) βΎ (π Γ π)) β (((π½ Γt π) βΎt (π Γ π)) Cn πΏ)) |
16 | | resmpo 7527 |
. . 3
β’ ((π β π β§ π β π) β ((π₯ β π, π¦ β π β¦ π΄) βΎ (π Γ π)) = (π₯ β π, π¦ β π β¦ π΄)) |
17 | 2, 3, 16 | syl2anc 584 |
. 2
β’ (π β ((π₯ β π, π¦ β π β¦ π΄) βΎ (π Γ π)) = (π₯ β π, π¦ β π β¦ π΄)) |
18 | | topontop 22414 |
. . . . . 6
β’ (π½ β (TopOnβπ) β π½ β Top) |
19 | 6, 18 | syl 17 |
. . . . 5
β’ (π β π½ β Top) |
20 | | topontop 22414 |
. . . . . 6
β’ (π β (TopOnβπ) β π β Top) |
21 | 7, 20 | syl 17 |
. . . . 5
β’ (π β π β Top) |
22 | | toponmax 22427 |
. . . . . . 7
β’ (π½ β (TopOnβπ) β π β π½) |
23 | 6, 22 | syl 17 |
. . . . . 6
β’ (π β π β π½) |
24 | 23, 2 | ssexd 5324 |
. . . . 5
β’ (π β π β V) |
25 | | toponmax 22427 |
. . . . . . 7
β’ (π β (TopOnβπ) β π β π) |
26 | 7, 25 | syl 17 |
. . . . . 6
β’ (π β π β π) |
27 | 26, 3 | ssexd 5324 |
. . . . 5
β’ (π β π β V) |
28 | | txrest 23134 |
. . . . 5
β’ (((π½ β Top β§ π β Top) β§ (π β V β§ π β V)) β ((π½ Γt π) βΎt (π Γ π)) = ((π½ βΎt π) Γt (π βΎt π))) |
29 | 19, 21, 24, 27, 28 | syl22anc 837 |
. . . 4
β’ (π β ((π½ Γt π) βΎt (π Γ π)) = ((π½ βΎt π) Γt (π βΎt π))) |
30 | | cnmpt1res.2 |
. . . . 5
β’ πΎ = (π½ βΎt π) |
31 | | cnmpt2res.7 |
. . . . 5
β’ π = (π βΎt π) |
32 | 30, 31 | oveq12i 7420 |
. . . 4
β’ (πΎ Γt π) = ((π½ βΎt π) Γt (π βΎt π)) |
33 | 29, 32 | eqtr4di 2790 |
. . 3
β’ (π β ((π½ Γt π) βΎt (π Γ π)) = (πΎ Γt π)) |
34 | 33 | oveq1d 7423 |
. 2
β’ (π β (((π½ Γt π) βΎt (π Γ π)) Cn πΏ) = ((πΎ Γt π) Cn πΏ)) |
35 | 15, 17, 34 | 3eltr3d 2847 |
1
β’ (π β (π₯ β π, π¦ β π β¦ π΄) β ((πΎ Γt π) Cn πΏ)) |