MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2res Structured version   Visualization version   GIF version

Theorem cnmpt2res 22284
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmpt1res.2 𝐾 = (𝐽t 𝑌)
cnmpt1res.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt1res.5 (𝜑𝑌𝑋)
cnmpt2res.7 𝑁 = (𝑀t 𝑊)
cnmpt2res.8 (𝜑𝑀 ∈ (TopOn‘𝑍))
cnmpt2res.9 (𝜑𝑊𝑍)
cnmpt2res.10 (𝜑 → (𝑥𝑋, 𝑦𝑍𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿))
Assertion
Ref Expression
cnmpt2res (𝜑 → (𝑥𝑌, 𝑦𝑊𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝑊   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝐿(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem cnmpt2res
StepHypRef Expression
1 cnmpt2res.10 . . 3 (𝜑 → (𝑥𝑋, 𝑦𝑍𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿))
2 cnmpt1res.5 . . . . 5 (𝜑𝑌𝑋)
3 cnmpt2res.9 . . . . 5 (𝜑𝑊𝑍)
4 xpss12 5569 . . . . 5 ((𝑌𝑋𝑊𝑍) → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍))
52, 3, 4syl2anc 586 . . . 4 (𝜑 → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍))
6 cnmpt1res.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
7 cnmpt2res.8 . . . . . 6 (𝜑𝑀 ∈ (TopOn‘𝑍))
8 txtopon 22198 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ (TopOn‘𝑍)) → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)))
96, 7, 8syl2anc 586 . . . . 5 (𝜑 → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)))
10 toponuni 21521 . . . . 5 ((𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)) → (𝑋 × 𝑍) = (𝐽 ×t 𝑀))
119, 10syl 17 . . . 4 (𝜑 → (𝑋 × 𝑍) = (𝐽 ×t 𝑀))
125, 11sseqtrd 4006 . . 3 (𝜑 → (𝑌 × 𝑊) ⊆ (𝐽 ×t 𝑀))
13 eqid 2821 . . . 4 (𝐽 ×t 𝑀) = (𝐽 ×t 𝑀)
1413cnrest 21892 . . 3 (((𝑥𝑋, 𝑦𝑍𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿) ∧ (𝑌 × 𝑊) ⊆ (𝐽 ×t 𝑀)) → ((𝑥𝑋, 𝑦𝑍𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿))
151, 12, 14syl2anc 586 . 2 (𝜑 → ((𝑥𝑋, 𝑦𝑍𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿))
16 resmpo 7271 . . 3 ((𝑌𝑋𝑊𝑍) → ((𝑥𝑋, 𝑦𝑍𝐴) ↾ (𝑌 × 𝑊)) = (𝑥𝑌, 𝑦𝑊𝐴))
172, 3, 16syl2anc 586 . 2 (𝜑 → ((𝑥𝑋, 𝑦𝑍𝐴) ↾ (𝑌 × 𝑊)) = (𝑥𝑌, 𝑦𝑊𝐴))
18 topontop 21520 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
196, 18syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
20 topontop 21520 . . . . . 6 (𝑀 ∈ (TopOn‘𝑍) → 𝑀 ∈ Top)
217, 20syl 17 . . . . 5 (𝜑𝑀 ∈ Top)
22 toponmax 21533 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
236, 22syl 17 . . . . . 6 (𝜑𝑋𝐽)
2423, 2ssexd 5227 . . . . 5 (𝜑𝑌 ∈ V)
25 toponmax 21533 . . . . . . 7 (𝑀 ∈ (TopOn‘𝑍) → 𝑍𝑀)
267, 25syl 17 . . . . . 6 (𝜑𝑍𝑀)
2726, 3ssexd 5227 . . . . 5 (𝜑𝑊 ∈ V)
28 txrest 22238 . . . . 5 (((𝐽 ∈ Top ∧ 𝑀 ∈ Top) ∧ (𝑌 ∈ V ∧ 𝑊 ∈ V)) → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽t 𝑌) ×t (𝑀t 𝑊)))
2919, 21, 24, 27, 28syl22anc 836 . . . 4 (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽t 𝑌) ×t (𝑀t 𝑊)))
30 cnmpt1res.2 . . . . 5 𝐾 = (𝐽t 𝑌)
31 cnmpt2res.7 . . . . 5 𝑁 = (𝑀t 𝑊)
3230, 31oveq12i 7167 . . . 4 (𝐾 ×t 𝑁) = ((𝐽t 𝑌) ×t (𝑀t 𝑊))
3329, 32syl6eqr 2874 . . 3 (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = (𝐾 ×t 𝑁))
3433oveq1d 7170 . 2 (𝜑 → (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿) = ((𝐾 ×t 𝑁) Cn 𝐿))
3515, 17, 343eltr3d 2927 1 (𝜑 → (𝑥𝑌, 𝑦𝑊𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935   cuni 4837   × cxp 5552  cres 5556  cfv 6354  (class class class)co 7155  cmpo 7157  t crest 16693  Topctop 21500  TopOnctopon 21517   Cn ccn 21831   ×t ctx 22167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-fin 8512  df-fi 8874  df-rest 16695  df-topgen 16716  df-top 21501  df-topon 21518  df-bases 21553  df-cn 21834  df-tx 22169
This theorem is referenced by:  efmndtmd  22708  submtmd  22711  iimulcn  23541  cxpcn2  25326  cxpcn3  25328  cvxsconn  32490  cvmlift2lem6  32555  cvmlift2lem12  32561
  Copyright terms: Public domain W3C validator