MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2res Structured version   Visualization version   GIF version

Theorem cnmpt2res 22828
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmpt1res.2 𝐾 = (𝐽t 𝑌)
cnmpt1res.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt1res.5 (𝜑𝑌𝑋)
cnmpt2res.7 𝑁 = (𝑀t 𝑊)
cnmpt2res.8 (𝜑𝑀 ∈ (TopOn‘𝑍))
cnmpt2res.9 (𝜑𝑊𝑍)
cnmpt2res.10 (𝜑 → (𝑥𝑋, 𝑦𝑍𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿))
Assertion
Ref Expression
cnmpt2res (𝜑 → (𝑥𝑌, 𝑦𝑊𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝑊   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝐿(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem cnmpt2res
StepHypRef Expression
1 cnmpt2res.10 . . 3 (𝜑 → (𝑥𝑋, 𝑦𝑍𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿))
2 cnmpt1res.5 . . . . 5 (𝜑𝑌𝑋)
3 cnmpt2res.9 . . . . 5 (𝜑𝑊𝑍)
4 xpss12 5604 . . . . 5 ((𝑌𝑋𝑊𝑍) → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍))
6 cnmpt1res.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
7 cnmpt2res.8 . . . . . 6 (𝜑𝑀 ∈ (TopOn‘𝑍))
8 txtopon 22742 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ (TopOn‘𝑍)) → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)))
96, 7, 8syl2anc 584 . . . . 5 (𝜑 → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)))
10 toponuni 22063 . . . . 5 ((𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)) → (𝑋 × 𝑍) = (𝐽 ×t 𝑀))
119, 10syl 17 . . . 4 (𝜑 → (𝑋 × 𝑍) = (𝐽 ×t 𝑀))
125, 11sseqtrd 3961 . . 3 (𝜑 → (𝑌 × 𝑊) ⊆ (𝐽 ×t 𝑀))
13 eqid 2738 . . . 4 (𝐽 ×t 𝑀) = (𝐽 ×t 𝑀)
1413cnrest 22436 . . 3 (((𝑥𝑋, 𝑦𝑍𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿) ∧ (𝑌 × 𝑊) ⊆ (𝐽 ×t 𝑀)) → ((𝑥𝑋, 𝑦𝑍𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿))
151, 12, 14syl2anc 584 . 2 (𝜑 → ((𝑥𝑋, 𝑦𝑍𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿))
16 resmpo 7394 . . 3 ((𝑌𝑋𝑊𝑍) → ((𝑥𝑋, 𝑦𝑍𝐴) ↾ (𝑌 × 𝑊)) = (𝑥𝑌, 𝑦𝑊𝐴))
172, 3, 16syl2anc 584 . 2 (𝜑 → ((𝑥𝑋, 𝑦𝑍𝐴) ↾ (𝑌 × 𝑊)) = (𝑥𝑌, 𝑦𝑊𝐴))
18 topontop 22062 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
196, 18syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
20 topontop 22062 . . . . . 6 (𝑀 ∈ (TopOn‘𝑍) → 𝑀 ∈ Top)
217, 20syl 17 . . . . 5 (𝜑𝑀 ∈ Top)
22 toponmax 22075 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
236, 22syl 17 . . . . . 6 (𝜑𝑋𝐽)
2423, 2ssexd 5248 . . . . 5 (𝜑𝑌 ∈ V)
25 toponmax 22075 . . . . . . 7 (𝑀 ∈ (TopOn‘𝑍) → 𝑍𝑀)
267, 25syl 17 . . . . . 6 (𝜑𝑍𝑀)
2726, 3ssexd 5248 . . . . 5 (𝜑𝑊 ∈ V)
28 txrest 22782 . . . . 5 (((𝐽 ∈ Top ∧ 𝑀 ∈ Top) ∧ (𝑌 ∈ V ∧ 𝑊 ∈ V)) → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽t 𝑌) ×t (𝑀t 𝑊)))
2919, 21, 24, 27, 28syl22anc 836 . . . 4 (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽t 𝑌) ×t (𝑀t 𝑊)))
30 cnmpt1res.2 . . . . 5 𝐾 = (𝐽t 𝑌)
31 cnmpt2res.7 . . . . 5 𝑁 = (𝑀t 𝑊)
3230, 31oveq12i 7287 . . . 4 (𝐾 ×t 𝑁) = ((𝐽t 𝑌) ×t (𝑀t 𝑊))
3329, 32eqtr4di 2796 . . 3 (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = (𝐾 ×t 𝑁))
3433oveq1d 7290 . 2 (𝜑 → (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿) = ((𝐾 ×t 𝑁) Cn 𝐿))
3515, 17, 343eltr3d 2853 1 (𝜑 → (𝑥𝑌, 𝑦𝑊𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   cuni 4839   × cxp 5587  cres 5591  cfv 6433  (class class class)co 7275  cmpo 7277  t crest 17131  Topctop 22042  TopOnctopon 22059   Cn ccn 22375   ×t ctx 22711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-map 8617  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378  df-tx 22713
This theorem is referenced by:  efmndtmd  23252  submtmd  23255  iimulcn  24101  cxpcn2  25899  cxpcn3  25901  cvxsconn  33205  cvmlift2lem6  33270  cvmlift2lem12  33276
  Copyright terms: Public domain W3C validator