![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt2res | Structured version Visualization version GIF version |
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
Ref | Expression |
---|---|
cnmpt1res.2 | ⊢ 𝐾 = (𝐽 ↾t 𝑌) |
cnmpt1res.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt1res.5 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
cnmpt2res.7 | ⊢ 𝑁 = (𝑀 ↾t 𝑊) |
cnmpt2res.8 | ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑍)) |
cnmpt2res.9 | ⊢ (𝜑 → 𝑊 ⊆ 𝑍) |
cnmpt2res.10 | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿)) |
Ref | Expression |
---|---|
cnmpt2res | ⊢ (𝜑 → (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt2res.10 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿)) | |
2 | cnmpt1res.5 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
3 | cnmpt2res.9 | . . . . 5 ⊢ (𝜑 → 𝑊 ⊆ 𝑍) | |
4 | xpss12 5358 | . . . . 5 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑊 ⊆ 𝑍) → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍)) | |
5 | 2, 3, 4 | syl2anc 581 | . . . 4 ⊢ (𝜑 → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍)) |
6 | cnmpt1res.3 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
7 | cnmpt2res.8 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑍)) | |
8 | txtopon 21766 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ (TopOn‘𝑍)) → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍))) | |
9 | 6, 7, 8 | syl2anc 581 | . . . . 5 ⊢ (𝜑 → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍))) |
10 | toponuni 21090 | . . . . 5 ⊢ ((𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)) → (𝑋 × 𝑍) = ∪ (𝐽 ×t 𝑀)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 × 𝑍) = ∪ (𝐽 ×t 𝑀)) |
12 | 5, 11 | sseqtrd 3867 | . . 3 ⊢ (𝜑 → (𝑌 × 𝑊) ⊆ ∪ (𝐽 ×t 𝑀)) |
13 | eqid 2826 | . . . 4 ⊢ ∪ (𝐽 ×t 𝑀) = ∪ (𝐽 ×t 𝑀) | |
14 | 13 | cnrest 21461 | . . 3 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿) ∧ (𝑌 × 𝑊) ⊆ ∪ (𝐽 ×t 𝑀)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿)) |
15 | 1, 12, 14 | syl2anc 581 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿)) |
16 | resmpt2 7019 | . . 3 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑊 ⊆ 𝑍) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴)) | |
17 | 2, 3, 16 | syl2anc 581 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴)) |
18 | topontop 21089 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
19 | 6, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) |
20 | topontop 21089 | . . . . . 6 ⊢ (𝑀 ∈ (TopOn‘𝑍) → 𝑀 ∈ Top) | |
21 | 7, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Top) |
22 | toponmax 21102 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
23 | 6, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
24 | 23, 2 | ssexd 5031 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ V) |
25 | toponmax 21102 | . . . . . . 7 ⊢ (𝑀 ∈ (TopOn‘𝑍) → 𝑍 ∈ 𝑀) | |
26 | 7, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑀) |
27 | 26, 3 | ssexd 5031 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ V) |
28 | txrest 21806 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝑀 ∈ Top) ∧ (𝑌 ∈ V ∧ 𝑊 ∈ V)) → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽 ↾t 𝑌) ×t (𝑀 ↾t 𝑊))) | |
29 | 19, 21, 24, 27, 28 | syl22anc 874 | . . . 4 ⊢ (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽 ↾t 𝑌) ×t (𝑀 ↾t 𝑊))) |
30 | cnmpt1res.2 | . . . . 5 ⊢ 𝐾 = (𝐽 ↾t 𝑌) | |
31 | cnmpt2res.7 | . . . . 5 ⊢ 𝑁 = (𝑀 ↾t 𝑊) | |
32 | 30, 31 | oveq12i 6918 | . . . 4 ⊢ (𝐾 ×t 𝑁) = ((𝐽 ↾t 𝑌) ×t (𝑀 ↾t 𝑊)) |
33 | 29, 32 | syl6eqr 2880 | . . 3 ⊢ (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = (𝐾 ×t 𝑁)) |
34 | 33 | oveq1d 6921 | . 2 ⊢ (𝜑 → (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿) = ((𝐾 ×t 𝑁) Cn 𝐿)) |
35 | 15, 17, 34 | 3eltr3d 2921 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 Vcvv 3415 ⊆ wss 3799 ∪ cuni 4659 × cxp 5341 ↾ cres 5345 ‘cfv 6124 (class class class)co 6906 ↦ cmpt2 6908 ↾t crest 16435 Topctop 21069 TopOnctopon 21086 Cn ccn 21400 ×t ctx 21735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-oadd 7831 df-er 8010 df-map 8125 df-en 8224 df-fin 8227 df-fi 8587 df-rest 16437 df-topgen 16458 df-top 21070 df-topon 21087 df-bases 21122 df-cn 21403 df-tx 21737 |
This theorem is referenced by: symgtgp 22276 submtmd 22279 iimulcn 23108 cxpcn2 24890 cxpcn3 24892 cvxsconn 31772 cvmlift2lem6 31837 cvmlift2lem12 31843 |
Copyright terms: Public domain | W3C validator |