![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt2res | Structured version Visualization version GIF version |
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
Ref | Expression |
---|---|
cnmpt1res.2 | ⊢ 𝐾 = (𝐽 ↾t 𝑌) |
cnmpt1res.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt1res.5 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
cnmpt2res.7 | ⊢ 𝑁 = (𝑀 ↾t 𝑊) |
cnmpt2res.8 | ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑍)) |
cnmpt2res.9 | ⊢ (𝜑 → 𝑊 ⊆ 𝑍) |
cnmpt2res.10 | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿)) |
Ref | Expression |
---|---|
cnmpt2res | ⊢ (𝜑 → (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt2res.10 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿)) | |
2 | cnmpt1res.5 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
3 | cnmpt2res.9 | . . . . 5 ⊢ (𝜑 → 𝑊 ⊆ 𝑍) | |
4 | xpss12 5688 | . . . . 5 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑊 ⊆ 𝑍) → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍)) | |
5 | 2, 3, 4 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍)) |
6 | cnmpt1res.3 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
7 | cnmpt2res.8 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑍)) | |
8 | txtopon 23489 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ (TopOn‘𝑍)) → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍))) | |
9 | 6, 7, 8 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍))) |
10 | toponuni 22810 | . . . . 5 ⊢ ((𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)) → (𝑋 × 𝑍) = ∪ (𝐽 ×t 𝑀)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 × 𝑍) = ∪ (𝐽 ×t 𝑀)) |
12 | 5, 11 | sseqtrd 4019 | . . 3 ⊢ (𝜑 → (𝑌 × 𝑊) ⊆ ∪ (𝐽 ×t 𝑀)) |
13 | eqid 2728 | . . . 4 ⊢ ∪ (𝐽 ×t 𝑀) = ∪ (𝐽 ×t 𝑀) | |
14 | 13 | cnrest 23183 | . . 3 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿) ∧ (𝑌 × 𝑊) ⊆ ∪ (𝐽 ×t 𝑀)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿)) |
15 | 1, 12, 14 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿)) |
16 | resmpo 7535 | . . 3 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑊 ⊆ 𝑍) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴)) | |
17 | 2, 3, 16 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴)) |
18 | topontop 22809 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
19 | 6, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) |
20 | topontop 22809 | . . . . . 6 ⊢ (𝑀 ∈ (TopOn‘𝑍) → 𝑀 ∈ Top) | |
21 | 7, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Top) |
22 | toponmax 22822 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
23 | 6, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
24 | 23, 2 | ssexd 5319 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ V) |
25 | toponmax 22822 | . . . . . . 7 ⊢ (𝑀 ∈ (TopOn‘𝑍) → 𝑍 ∈ 𝑀) | |
26 | 7, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑀) |
27 | 26, 3 | ssexd 5319 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ V) |
28 | txrest 23529 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝑀 ∈ Top) ∧ (𝑌 ∈ V ∧ 𝑊 ∈ V)) → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽 ↾t 𝑌) ×t (𝑀 ↾t 𝑊))) | |
29 | 19, 21, 24, 27, 28 | syl22anc 838 | . . . 4 ⊢ (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽 ↾t 𝑌) ×t (𝑀 ↾t 𝑊))) |
30 | cnmpt1res.2 | . . . . 5 ⊢ 𝐾 = (𝐽 ↾t 𝑌) | |
31 | cnmpt2res.7 | . . . . 5 ⊢ 𝑁 = (𝑀 ↾t 𝑊) | |
32 | 30, 31 | oveq12i 7427 | . . . 4 ⊢ (𝐾 ×t 𝑁) = ((𝐽 ↾t 𝑌) ×t (𝑀 ↾t 𝑊)) |
33 | 29, 32 | eqtr4di 2786 | . . 3 ⊢ (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = (𝐾 ×t 𝑁)) |
34 | 33 | oveq1d 7430 | . 2 ⊢ (𝜑 → (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿) = ((𝐾 ×t 𝑁) Cn 𝐿)) |
35 | 15, 17, 34 | 3eltr3d 2843 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ⊆ wss 3945 ∪ cuni 4904 × cxp 5671 ↾ cres 5675 ‘cfv 6543 (class class class)co 7415 ∈ cmpo 7417 ↾t crest 17396 Topctop 22789 TopOnctopon 22806 Cn ccn 23122 ×t ctx 23458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-map 8841 df-en 8959 df-fin 8962 df-fi 9429 df-rest 17398 df-topgen 17419 df-top 22790 df-topon 22807 df-bases 22843 df-cn 23125 df-tx 23460 |
This theorem is referenced by: efmndtmd 23999 submtmd 24002 iimulcn 24855 iimulcnOLD 24856 cxpcn2 26675 cxpcn3 26677 cvxsconn 34848 cvmlift2lem6 34913 cvmlift2lem12 34919 |
Copyright terms: Public domain | W3C validator |