MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2res Structured version   Visualization version   GIF version

Theorem cnmpt2res 23575
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmpt1res.2 𝐾 = (𝐽t 𝑌)
cnmpt1res.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt1res.5 (𝜑𝑌𝑋)
cnmpt2res.7 𝑁 = (𝑀t 𝑊)
cnmpt2res.8 (𝜑𝑀 ∈ (TopOn‘𝑍))
cnmpt2res.9 (𝜑𝑊𝑍)
cnmpt2res.10 (𝜑 → (𝑥𝑋, 𝑦𝑍𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿))
Assertion
Ref Expression
cnmpt2res (𝜑 → (𝑥𝑌, 𝑦𝑊𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝑊   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝐿(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem cnmpt2res
StepHypRef Expression
1 cnmpt2res.10 . . 3 (𝜑 → (𝑥𝑋, 𝑦𝑍𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿))
2 cnmpt1res.5 . . . . 5 (𝜑𝑌𝑋)
3 cnmpt2res.9 . . . . 5 (𝜑𝑊𝑍)
4 xpss12 5688 . . . . 5 ((𝑌𝑋𝑊𝑍) → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍))
52, 3, 4syl2anc 583 . . . 4 (𝜑 → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍))
6 cnmpt1res.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
7 cnmpt2res.8 . . . . . 6 (𝜑𝑀 ∈ (TopOn‘𝑍))
8 txtopon 23489 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ (TopOn‘𝑍)) → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)))
96, 7, 8syl2anc 583 . . . . 5 (𝜑 → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)))
10 toponuni 22810 . . . . 5 ((𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)) → (𝑋 × 𝑍) = (𝐽 ×t 𝑀))
119, 10syl 17 . . . 4 (𝜑 → (𝑋 × 𝑍) = (𝐽 ×t 𝑀))
125, 11sseqtrd 4019 . . 3 (𝜑 → (𝑌 × 𝑊) ⊆ (𝐽 ×t 𝑀))
13 eqid 2728 . . . 4 (𝐽 ×t 𝑀) = (𝐽 ×t 𝑀)
1413cnrest 23183 . . 3 (((𝑥𝑋, 𝑦𝑍𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿) ∧ (𝑌 × 𝑊) ⊆ (𝐽 ×t 𝑀)) → ((𝑥𝑋, 𝑦𝑍𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿))
151, 12, 14syl2anc 583 . 2 (𝜑 → ((𝑥𝑋, 𝑦𝑍𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿))
16 resmpo 7535 . . 3 ((𝑌𝑋𝑊𝑍) → ((𝑥𝑋, 𝑦𝑍𝐴) ↾ (𝑌 × 𝑊)) = (𝑥𝑌, 𝑦𝑊𝐴))
172, 3, 16syl2anc 583 . 2 (𝜑 → ((𝑥𝑋, 𝑦𝑍𝐴) ↾ (𝑌 × 𝑊)) = (𝑥𝑌, 𝑦𝑊𝐴))
18 topontop 22809 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
196, 18syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
20 topontop 22809 . . . . . 6 (𝑀 ∈ (TopOn‘𝑍) → 𝑀 ∈ Top)
217, 20syl 17 . . . . 5 (𝜑𝑀 ∈ Top)
22 toponmax 22822 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
236, 22syl 17 . . . . . 6 (𝜑𝑋𝐽)
2423, 2ssexd 5319 . . . . 5 (𝜑𝑌 ∈ V)
25 toponmax 22822 . . . . . . 7 (𝑀 ∈ (TopOn‘𝑍) → 𝑍𝑀)
267, 25syl 17 . . . . . 6 (𝜑𝑍𝑀)
2726, 3ssexd 5319 . . . . 5 (𝜑𝑊 ∈ V)
28 txrest 23529 . . . . 5 (((𝐽 ∈ Top ∧ 𝑀 ∈ Top) ∧ (𝑌 ∈ V ∧ 𝑊 ∈ V)) → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽t 𝑌) ×t (𝑀t 𝑊)))
2919, 21, 24, 27, 28syl22anc 838 . . . 4 (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽t 𝑌) ×t (𝑀t 𝑊)))
30 cnmpt1res.2 . . . . 5 𝐾 = (𝐽t 𝑌)
31 cnmpt2res.7 . . . . 5 𝑁 = (𝑀t 𝑊)
3230, 31oveq12i 7427 . . . 4 (𝐾 ×t 𝑁) = ((𝐽t 𝑌) ×t (𝑀t 𝑊))
3329, 32eqtr4di 2786 . . 3 (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = (𝐾 ×t 𝑁))
3433oveq1d 7430 . 2 (𝜑 → (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿) = ((𝐾 ×t 𝑁) Cn 𝐿))
3515, 17, 343eltr3d 2843 1 (𝜑 → (𝑥𝑌, 𝑦𝑊𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3470  wss 3945   cuni 4904   × cxp 5671  cres 5675  cfv 6543  (class class class)co 7415  cmpo 7417  t crest 17396  Topctop 22789  TopOnctopon 22806   Cn ccn 23122   ×t ctx 23458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-map 8841  df-en 8959  df-fin 8962  df-fi 9429  df-rest 17398  df-topgen 17419  df-top 22790  df-topon 22807  df-bases 22843  df-cn 23125  df-tx 23460
This theorem is referenced by:  efmndtmd  23999  submtmd  24002  iimulcn  24855  iimulcnOLD  24856  cxpcn2  26675  cxpcn3  26677  cvxsconn  34848  cvmlift2lem6  34913  cvmlift2lem12  34919
  Copyright terms: Public domain W3C validator