Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoopn Structured version   Visualization version   GIF version

Theorem icoopn 41955
Description: A left-closed right-open interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
icoopn.a (𝜑𝐴 ∈ ℝ)
icoopn.c (𝜑𝐶 ∈ ℝ*)
icoopn.b (𝜑𝐵 ∈ ℝ*)
icoopn.k 𝐾 = (topGen‘ran (,))
icoopn.j 𝐽 = (𝐾t (𝐴[,)𝐵))
icoopn.cleb (𝜑𝐶𝐵)
Assertion
Ref Expression
icoopn (𝜑 → (𝐴[,)𝐶) ∈ 𝐽)

Proof of Theorem icoopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icoopn.k . . . . 5 𝐾 = (topGen‘ran (,))
2 retop 23345 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2908 . . . 4 𝐾 ∈ Top
43a1i 11 . . 3 (𝜑𝐾 ∈ Top)
5 ovexd 7165 . . 3 (𝜑 → (𝐴[,)𝐵) ∈ V)
6 iooretop 23349 . . . . 5 (-∞(,)𝐶) ∈ (topGen‘ran (,))
76, 1eleqtrri 2911 . . . 4 (-∞(,)𝐶) ∈ 𝐾
87a1i 11 . . 3 (𝜑 → (-∞(,)𝐶) ∈ 𝐾)
9 elrestr 16680 . . 3 ((𝐾 ∈ Top ∧ (𝐴[,)𝐵) ∈ V ∧ (-∞(,)𝐶) ∈ 𝐾) → ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) ∈ (𝐾t (𝐴[,)𝐵)))
104, 5, 8, 9syl3anc 1368 . 2 (𝜑 → ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) ∈ (𝐾t (𝐴[,)𝐵)))
11 icoopn.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1211rexrd 10668 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
1312adantr 484 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ*)
14 icoopn.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
1514adantr 484 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐶 ∈ ℝ*)
16 elinel1 4147 . . . . . . . 8 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (-∞(,)𝐶))
17 elioore 12746 . . . . . . . 8 (𝑥 ∈ (-∞(,)𝐶) → 𝑥 ∈ ℝ)
1816, 17syl 17 . . . . . . 7 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
1918rexrd 10668 . . . . . 6 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ*)
2019adantl 485 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ ℝ*)
21 icoopn.b . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
2221adantr 484 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
23 elinel2 4148 . . . . . . 7 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (𝐴[,)𝐵))
2423adantl 485 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐵))
25 icogelb 12766 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → 𝐴𝑥)
2613, 22, 24, 25syl3anc 1368 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐴𝑥)
27 mnfxr 10675 . . . . . . 7 -∞ ∈ ℝ*
2827a1i 11 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → -∞ ∈ ℝ*)
2916adantl 485 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (-∞(,)𝐶))
30 iooltub 41940 . . . . . 6 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (-∞(,)𝐶)) → 𝑥 < 𝐶)
3128, 15, 29, 30syl3anc 1368 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 < 𝐶)
3213, 15, 20, 26, 31elicod 12765 . . . 4 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐶))
3327a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → -∞ ∈ ℝ*)
3414adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐶 ∈ ℝ*)
35 icossre 12796 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ*) → (𝐴[,)𝐶) ⊆ ℝ)
3611, 14, 35syl2anc 587 . . . . . . 7 (𝜑 → (𝐴[,)𝐶) ⊆ ℝ)
3736sselda 3943 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ ℝ)
3837mnfltd 12497 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → -∞ < 𝑥)
3912adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐴 ∈ ℝ*)
40 simpr 488 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ (𝐴[,)𝐶))
41 icoltub 41938 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 < 𝐶)
4239, 34, 40, 41syl3anc 1368 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 < 𝐶)
4333, 34, 37, 38, 42eliood 41928 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ (-∞(,)𝐶))
4421adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐵 ∈ ℝ*)
4537rexrd 10668 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ ℝ*)
46 icogelb 12766 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐶)) → 𝐴𝑥)
4739, 34, 40, 46syl3anc 1368 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐴𝑥)
48 icoopn.cleb . . . . . . . 8 (𝜑𝐶𝐵)
4948adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐶𝐵)
5045, 34, 44, 42, 49xrltletrd 12532 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 < 𝐵)
5139, 44, 45, 47, 50elicod 12765 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ (𝐴[,)𝐵))
5243, 51elind 4146 . . . 4 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)))
5332, 52impbida 800 . . 3 (𝜑 → (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) ↔ 𝑥 ∈ (𝐴[,)𝐶)))
5453eqrdv 2819 . 2 (𝜑 → ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) = (𝐴[,)𝐶))
55 icoopn.j . . . 4 𝐽 = (𝐾t (𝐴[,)𝐵))
5655eqcomi 2830 . . 3 (𝐾t (𝐴[,)𝐵)) = 𝐽
5756a1i 11 . 2 (𝜑 → (𝐾t (𝐴[,)𝐵)) = 𝐽)
5810, 54, 573eltr3d 2926 1 (𝜑 → (𝐴[,)𝐶) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3471  cin 3909  wss 3910   class class class wbr 5039  ran crn 5529  cfv 6328  (class class class)co 7130  cr 10513  -∞cmnf 10650  *cxr 10651   < clt 10652  cle 10653  (,)cioo 12716  [,)cico 12718  t crest 16672  topGenctg 16689  Topctop 21476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-inf 8883  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-q 12327  df-ioo 12720  df-ico 12722  df-rest 16674  df-topgen 16695  df-top 21477  df-bases 21529
This theorem is referenced by:  fouriersw  42666
  Copyright terms: Public domain W3C validator