Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoopn Structured version   Visualization version   GIF version

Theorem icoopn 43063
Description: A left-closed right-open interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
icoopn.a (𝜑𝐴 ∈ ℝ)
icoopn.c (𝜑𝐶 ∈ ℝ*)
icoopn.b (𝜑𝐵 ∈ ℝ*)
icoopn.k 𝐾 = (topGen‘ran (,))
icoopn.j 𝐽 = (𝐾t (𝐴[,)𝐵))
icoopn.cleb (𝜑𝐶𝐵)
Assertion
Ref Expression
icoopn (𝜑 → (𝐴[,)𝐶) ∈ 𝐽)

Proof of Theorem icoopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icoopn.k . . . . 5 𝐾 = (topGen‘ran (,))
2 retop 23925 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2835 . . . 4 𝐾 ∈ Top
43a1i 11 . . 3 (𝜑𝐾 ∈ Top)
5 ovexd 7310 . . 3 (𝜑 → (𝐴[,)𝐵) ∈ V)
6 iooretop 23929 . . . . 5 (-∞(,)𝐶) ∈ (topGen‘ran (,))
76, 1eleqtrri 2838 . . . 4 (-∞(,)𝐶) ∈ 𝐾
87a1i 11 . . 3 (𝜑 → (-∞(,)𝐶) ∈ 𝐾)
9 elrestr 17139 . . 3 ((𝐾 ∈ Top ∧ (𝐴[,)𝐵) ∈ V ∧ (-∞(,)𝐶) ∈ 𝐾) → ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) ∈ (𝐾t (𝐴[,)𝐵)))
104, 5, 8, 9syl3anc 1370 . 2 (𝜑 → ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) ∈ (𝐾t (𝐴[,)𝐵)))
11 icoopn.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1211rexrd 11025 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
1312adantr 481 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ*)
14 icoopn.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
1514adantr 481 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐶 ∈ ℝ*)
16 elinel1 4129 . . . . . . . 8 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (-∞(,)𝐶))
17 elioore 13109 . . . . . . . 8 (𝑥 ∈ (-∞(,)𝐶) → 𝑥 ∈ ℝ)
1816, 17syl 17 . . . . . . 7 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
1918rexrd 11025 . . . . . 6 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ*)
2019adantl 482 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ ℝ*)
21 icoopn.b . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
2221adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
23 elinel2 4130 . . . . . . 7 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (𝐴[,)𝐵))
2423adantl 482 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐵))
25 icogelb 13130 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → 𝐴𝑥)
2613, 22, 24, 25syl3anc 1370 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐴𝑥)
27 mnfxr 11032 . . . . . . 7 -∞ ∈ ℝ*
2827a1i 11 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → -∞ ∈ ℝ*)
2916adantl 482 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (-∞(,)𝐶))
30 iooltub 43048 . . . . . 6 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (-∞(,)𝐶)) → 𝑥 < 𝐶)
3128, 15, 29, 30syl3anc 1370 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 < 𝐶)
3213, 15, 20, 26, 31elicod 13129 . . . 4 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐶))
3327a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → -∞ ∈ ℝ*)
3414adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐶 ∈ ℝ*)
35 icossre 13160 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ*) → (𝐴[,)𝐶) ⊆ ℝ)
3611, 14, 35syl2anc 584 . . . . . . 7 (𝜑 → (𝐴[,)𝐶) ⊆ ℝ)
3736sselda 3921 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ ℝ)
3837mnfltd 12860 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → -∞ < 𝑥)
3912adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐴 ∈ ℝ*)
40 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ (𝐴[,)𝐶))
41 icoltub 43046 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 < 𝐶)
4239, 34, 40, 41syl3anc 1370 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 < 𝐶)
4333, 34, 37, 38, 42eliood 43036 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ (-∞(,)𝐶))
4421adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐵 ∈ ℝ*)
4537rexrd 11025 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ ℝ*)
46 icogelb 13130 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐶)) → 𝐴𝑥)
4739, 34, 40, 46syl3anc 1370 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐴𝑥)
48 icoopn.cleb . . . . . . . 8 (𝜑𝐶𝐵)
4948adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐶𝐵)
5045, 34, 44, 42, 49xrltletrd 12895 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 < 𝐵)
5139, 44, 45, 47, 50elicod 13129 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ (𝐴[,)𝐵))
5243, 51elind 4128 . . . 4 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)))
5332, 52impbida 798 . . 3 (𝜑 → (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) ↔ 𝑥 ∈ (𝐴[,)𝐶)))
5453eqrdv 2736 . 2 (𝜑 → ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) = (𝐴[,)𝐶))
55 icoopn.j . . . 4 𝐽 = (𝐾t (𝐴[,)𝐵))
5655eqcomi 2747 . . 3 (𝐾t (𝐴[,)𝐵)) = 𝐽
5756a1i 11 . 2 (𝜑 → (𝐾t (𝐴[,)𝐵)) = 𝐽)
5810, 54, 573eltr3d 2853 1 (𝜑 → (𝐴[,)𝐶) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887   class class class wbr 5074  ran crn 5590  cfv 6433  (class class class)co 7275  cr 10870  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  (,)cioo 13079  [,)cico 13081  t crest 17131  topGenctg 17148  Topctop 22042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-ioo 13083  df-ico 13085  df-rest 17133  df-topgen 17154  df-top 22043  df-bases 22096
This theorem is referenced by:  fouriersw  43772
  Copyright terms: Public domain W3C validator