Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoopn Structured version   Visualization version   GIF version

Theorem icoopn 42771
Description: A left-closed right-open interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
icoopn.a (𝜑𝐴 ∈ ℝ)
icoopn.c (𝜑𝐶 ∈ ℝ*)
icoopn.b (𝜑𝐵 ∈ ℝ*)
icoopn.k 𝐾 = (topGen‘ran (,))
icoopn.j 𝐽 = (𝐾t (𝐴[,)𝐵))
icoopn.cleb (𝜑𝐶𝐵)
Assertion
Ref Expression
icoopn (𝜑 → (𝐴[,)𝐶) ∈ 𝐽)

Proof of Theorem icoopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icoopn.k . . . . 5 𝐾 = (topGen‘ran (,))
2 retop 23688 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2836 . . . 4 𝐾 ∈ Top
43a1i 11 . . 3 (𝜑𝐾 ∈ Top)
5 ovexd 7269 . . 3 (𝜑 → (𝐴[,)𝐵) ∈ V)
6 iooretop 23692 . . . . 5 (-∞(,)𝐶) ∈ (topGen‘ran (,))
76, 1eleqtrri 2839 . . . 4 (-∞(,)𝐶) ∈ 𝐾
87a1i 11 . . 3 (𝜑 → (-∞(,)𝐶) ∈ 𝐾)
9 elrestr 16963 . . 3 ((𝐾 ∈ Top ∧ (𝐴[,)𝐵) ∈ V ∧ (-∞(,)𝐶) ∈ 𝐾) → ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) ∈ (𝐾t (𝐴[,)𝐵)))
104, 5, 8, 9syl3anc 1373 . 2 (𝜑 → ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) ∈ (𝐾t (𝐴[,)𝐵)))
11 icoopn.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1211rexrd 10910 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
1312adantr 484 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ*)
14 icoopn.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
1514adantr 484 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐶 ∈ ℝ*)
16 elinel1 4125 . . . . . . . 8 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (-∞(,)𝐶))
17 elioore 12992 . . . . . . . 8 (𝑥 ∈ (-∞(,)𝐶) → 𝑥 ∈ ℝ)
1816, 17syl 17 . . . . . . 7 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
1918rexrd 10910 . . . . . 6 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ*)
2019adantl 485 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ ℝ*)
21 icoopn.b . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
2221adantr 484 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
23 elinel2 4126 . . . . . . 7 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (𝐴[,)𝐵))
2423adantl 485 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐵))
25 icogelb 13013 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → 𝐴𝑥)
2613, 22, 24, 25syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐴𝑥)
27 mnfxr 10917 . . . . . . 7 -∞ ∈ ℝ*
2827a1i 11 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → -∞ ∈ ℝ*)
2916adantl 485 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (-∞(,)𝐶))
30 iooltub 42756 . . . . . 6 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (-∞(,)𝐶)) → 𝑥 < 𝐶)
3128, 15, 29, 30syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 < 𝐶)
3213, 15, 20, 26, 31elicod 13012 . . . 4 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐶))
3327a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → -∞ ∈ ℝ*)
3414adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐶 ∈ ℝ*)
35 icossre 13043 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ*) → (𝐴[,)𝐶) ⊆ ℝ)
3611, 14, 35syl2anc 587 . . . . . . 7 (𝜑 → (𝐴[,)𝐶) ⊆ ℝ)
3736sselda 3917 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ ℝ)
3837mnfltd 12743 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → -∞ < 𝑥)
3912adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐴 ∈ ℝ*)
40 simpr 488 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ (𝐴[,)𝐶))
41 icoltub 42754 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 < 𝐶)
4239, 34, 40, 41syl3anc 1373 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 < 𝐶)
4333, 34, 37, 38, 42eliood 42744 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ (-∞(,)𝐶))
4421adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐵 ∈ ℝ*)
4537rexrd 10910 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ ℝ*)
46 icogelb 13013 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐶)) → 𝐴𝑥)
4739, 34, 40, 46syl3anc 1373 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐴𝑥)
48 icoopn.cleb . . . . . . . 8 (𝜑𝐶𝐵)
4948adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐶𝐵)
5045, 34, 44, 42, 49xrltletrd 12778 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 < 𝐵)
5139, 44, 45, 47, 50elicod 13012 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ (𝐴[,)𝐵))
5243, 51elind 4124 . . . 4 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)))
5332, 52impbida 801 . . 3 (𝜑 → (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) ↔ 𝑥 ∈ (𝐴[,)𝐶)))
5453eqrdv 2737 . 2 (𝜑 → ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) = (𝐴[,)𝐶))
55 icoopn.j . . . 4 𝐽 = (𝐾t (𝐴[,)𝐵))
5655eqcomi 2748 . . 3 (𝐾t (𝐴[,)𝐵)) = 𝐽
5756a1i 11 . 2 (𝜑 → (𝐾t (𝐴[,)𝐵)) = 𝐽)
5810, 54, 573eltr3d 2854 1 (𝜑 → (𝐴[,)𝐶) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3422  cin 3881  wss 3882   class class class wbr 5069  ran crn 5569  cfv 6400  (class class class)co 7234  cr 10755  -∞cmnf 10892  *cxr 10893   < clt 10894  cle 10895  (,)cioo 12962  [,)cico 12964  t crest 16955  topGenctg 16972  Topctop 21819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10812  ax-resscn 10813  ax-1cn 10814  ax-icn 10815  ax-addcl 10816  ax-addrcl 10817  ax-mulcl 10818  ax-mulrcl 10819  ax-mulcom 10820  ax-addass 10821  ax-mulass 10822  ax-distr 10823  ax-i2m1 10824  ax-1ne0 10825  ax-1rid 10826  ax-rnegex 10827  ax-rrecex 10828  ax-cnre 10829  ax-pre-lttri 10830  ax-pre-lttrn 10831  ax-pre-ltadd 10832  ax-pre-mulgt0 10833  ax-pre-sup 10834
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3711  df-csb 3828  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-er 8414  df-en 8650  df-dom 8651  df-sdom 8652  df-sup 9085  df-inf 9086  df-pnf 10896  df-mnf 10897  df-xr 10898  df-ltxr 10899  df-le 10900  df-sub 11091  df-neg 11092  df-div 11517  df-nn 11858  df-n0 12118  df-z 12204  df-uz 12466  df-q 12572  df-ioo 12966  df-ico 12968  df-rest 16957  df-topgen 16978  df-top 21820  df-bases 21872
This theorem is referenced by:  fouriersw  43480
  Copyright terms: Public domain W3C validator