Step | Hyp | Ref
| Expression |
1 | | fourierdlem33.5 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) |
2 | 1 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → 𝐿 ∈ (𝐹 limℂ 𝐵)) |
3 | | fourierdlem33.y |
. . . . 5
⊢ 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹‘𝐷)) |
4 | | iftrue 4429 |
. . . . 5
⊢ (𝐷 = 𝐵 → if(𝐷 = 𝐵, 𝐿, (𝐹‘𝐷)) = 𝐿) |
5 | 3, 4 | syl5req 2806 |
. . . 4
⊢ (𝐷 = 𝐵 → 𝐿 = 𝑌) |
6 | 5 | adantl 485 |
. . 3
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → 𝐿 = 𝑌) |
7 | | oveq2 7164 |
. . . . 5
⊢ (𝐷 = 𝐵 → ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐷) = ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐵)) |
8 | 7 | adantl 485 |
. . . 4
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐷) = ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐵)) |
9 | | fourierdlem33.4 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
10 | | cncff 23608 |
. . . . . . 7
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
12 | 11 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
13 | | fourierdlem33.ss |
. . . . . 6
⊢ (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
14 | 13 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
15 | | ioosscn 12854 |
. . . . . 6
⊢ (𝐴(,)𝐵) ⊆ ℂ |
16 | 15 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → (𝐴(,)𝐵) ⊆ ℂ) |
17 | | eqid 2758 |
. . . . 5
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
18 | | fourierdlem33.10 |
. . . . 5
⊢ 𝐽 =
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) |
19 | | fourierdlem33.7 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ ℝ) |
20 | | fourierdlem33.8 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 < 𝐷) |
21 | 19 | leidd 11257 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ≤ 𝐷) |
22 | | fourierdlem33.6 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℝ) |
23 | 22 | rexrd 10742 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈
ℝ*) |
24 | | elioc2 12855 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℝ*
∧ 𝐷 ∈ ℝ)
→ (𝐷 ∈ (𝐶(,]𝐷) ↔ (𝐷 ∈ ℝ ∧ 𝐶 < 𝐷 ∧ 𝐷 ≤ 𝐷))) |
25 | 23, 19, 24 | syl2anc 587 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ∈ (𝐶(,]𝐷) ↔ (𝐷 ∈ ℝ ∧ 𝐶 < 𝐷 ∧ 𝐷 ≤ 𝐷))) |
26 | 19, 20, 21, 25 | mpbir3and 1339 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ (𝐶(,]𝐷)) |
27 | 26 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → 𝐷 ∈ (𝐶(,]𝐷)) |
28 | | eqcom 2765 |
. . . . . . . . 9
⊢ (𝐷 = 𝐵 ↔ 𝐵 = 𝐷) |
29 | 28 | biimpi 219 |
. . . . . . . 8
⊢ (𝐷 = 𝐵 → 𝐵 = 𝐷) |
30 | 29 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → 𝐵 = 𝐷) |
31 | 17 | cnfldtop 23499 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) ∈ Top |
32 | | fourierdlem33.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ ℝ) |
33 | 32 | rexrd 10742 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
34 | | fourierdlem33.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ ℝ) |
35 | 34 | rexrd 10742 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
36 | | fourierdlem33.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 < 𝐵) |
37 | | ioounsn 12922 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
38 | 33, 35, 36, 37 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
39 | | ovex 7189 |
. . . . . . . . . . . . 13
⊢ (𝐴(,]𝐵) ∈ V |
40 | 39 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴(,]𝐵) ∈ V) |
41 | 38, 40 | eqeltrd 2852 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V) |
42 | | resttop 21874 |
. . . . . . . . . . 11
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V) →
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top) |
43 | 31, 41, 42 | sylancr 590 |
. . . . . . . . . 10
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top) |
44 | 18, 43 | eqeltrid 2856 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ Top) |
45 | 44 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → 𝐽 ∈ Top) |
46 | | oveq2 7164 |
. . . . . . . . . . 11
⊢ (𝐷 = 𝐵 → (𝐶(,]𝐷) = (𝐶(,]𝐵)) |
47 | 46 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → (𝐶(,]𝐷) = (𝐶(,]𝐵)) |
48 | 23 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈
ℝ*) |
49 | | pnfxr 10746 |
. . . . . . . . . . . . . . . . 17
⊢ +∞
∈ ℝ* |
50 | 49 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → +∞ ∈
ℝ*) |
51 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,]𝐵)) |
52 | 34 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝐵 ∈ ℝ) |
53 | | elioc2 12855 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥 ∧ 𝑥 ≤ 𝐵))) |
54 | 48, 52, 53 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥 ∧ 𝑥 ≤ 𝐵))) |
55 | 51, 54 | mpbid 235 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥 ∧ 𝑥 ≤ 𝐵)) |
56 | 55 | simp1d 1139 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ) |
57 | 55 | simp2d 1140 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥) |
58 | 56 | ltpnfd 12570 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 < +∞) |
59 | 48, 50, 56, 57, 58 | eliood 42546 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞)) |
60 | 32 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ) |
61 | 22 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ) |
62 | 32, 34, 22, 19, 20, 13 | fourierdlem10 43170 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) |
63 | 62 | simpld 498 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ≤ 𝐶) |
64 | 63 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ≤ 𝐶) |
65 | 60, 61, 56, 64, 57 | lelttrd 10849 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 < 𝑥) |
66 | 55 | simp3d 1141 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ≤ 𝐵) |
67 | 33 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈
ℝ*) |
68 | | elioc2 12855 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵))) |
69 | 67, 52, 68 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵))) |
70 | 56, 65, 66, 69 | mpbir3and 1339 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵)) |
71 | 59, 70 | elind 4101 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) |
72 | | elinel1 4102 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞)) |
73 | | elioore 12822 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (𝐶(,)+∞) → 𝑥 ∈ ℝ) |
74 | 72, 73 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ) |
75 | 74 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ ℝ) |
76 | 23 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 ∈
ℝ*) |
77 | 49 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → +∞ ∈
ℝ*) |
78 | 72 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,)+∞)) |
79 | | ioogtlb 42543 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ ℝ*
∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ (𝐶(,)+∞)) → 𝐶 < 𝑥) |
80 | 76, 77, 78, 79 | syl3anc 1368 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 < 𝑥) |
81 | | elinel2 4103 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵)) |
82 | 81 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐴(,]𝐵)) |
83 | 33 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐴 ∈
ℝ*) |
84 | 34 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐵 ∈ ℝ) |
85 | 83, 84, 68 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵))) |
86 | 82, 85 | mpbid 235 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵)) |
87 | 86 | simp3d 1141 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ≤ 𝐵) |
88 | 76, 84, 53 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥 ∧ 𝑥 ≤ 𝐵))) |
89 | 75, 80, 87, 88 | mpbir3and 1339 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,]𝐵)) |
90 | 71, 89 | impbida 800 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ (𝐶(,]𝐵) ↔ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))) |
91 | 90 | eqrdv 2756 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶(,]𝐵) = ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) |
92 | | retop 23477 |
. . . . . . . . . . . . . 14
⊢
(topGen‘ran (,)) ∈ Top |
93 | 92 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (topGen‘ran (,))
∈ Top) |
94 | | iooretop 23481 |
. . . . . . . . . . . . . 14
⊢ (𝐶(,)+∞) ∈
(topGen‘ran (,)) |
95 | 94 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶(,)+∞) ∈ (topGen‘ran
(,))) |
96 | | elrestr 16774 |
. . . . . . . . . . . . 13
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐴(,]𝐵) ∈ V ∧ (𝐶(,)+∞) ∈ (topGen‘ran (,)))
→ ((𝐶(,)+∞)
∩ (𝐴(,]𝐵)) ∈ ((topGen‘ran
(,)) ↾t (𝐴(,]𝐵))) |
97 | 93, 40, 95, 96 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ ((topGen‘ran (,))
↾t (𝐴(,]𝐵))) |
98 | 91, 97 | eqeltrd 2852 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶(,]𝐵) ∈ ((topGen‘ran (,))
↾t (𝐴(,]𝐵))) |
99 | 98 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → (𝐶(,]𝐵) ∈ ((topGen‘ran (,))
↾t (𝐴(,]𝐵))) |
100 | 47, 99 | eqeltrd 2852 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → (𝐶(,]𝐷) ∈ ((topGen‘ran (,))
↾t (𝐴(,]𝐵))) |
101 | 18 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 = ((TopOpen‘ℂfld)
↾t ((𝐴(,)𝐵) ∪ {𝐵}))) |
102 | 38 | oveq2d 7172 |
. . . . . . . . . . 11
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld)
↾t (𝐴(,]𝐵))) |
103 | 17 | tgioo2 23518 |
. . . . . . . . . . . . . 14
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
104 | 103 | eqcomi 2767 |
. . . . . . . . . . . . 13
⊢
((TopOpen‘ℂfld) ↾t ℝ) =
(topGen‘ran (,)) |
105 | 104 | oveq1i 7166 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ↾t ℝ)
↾t (𝐴(,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴(,]𝐵)) |
106 | 31 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(TopOpen‘ℂfld) ∈ Top) |
107 | | iocssre 12872 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝐴(,]𝐵) ⊆
ℝ) |
108 | 33, 34, 107 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴(,]𝐵) ⊆ ℝ) |
109 | | reex 10679 |
. . . . . . . . . . . . . 14
⊢ ℝ
∈ V |
110 | 109 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℝ ∈
V) |
111 | | restabs 21879 |
. . . . . . . . . . . . 13
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,]𝐵) ⊆ ℝ ∧ ℝ ∈ V)
→ (((TopOpen‘ℂfld) ↾t ℝ)
↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld)
↾t (𝐴(,]𝐵))) |
112 | 106, 108,
110, 111 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(((TopOpen‘ℂfld) ↾t ℝ)
↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld)
↾t (𝐴(,]𝐵))) |
113 | 105, 112 | syl5reqr 2808 |
. . . . . . . . . . 11
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴(,]𝐵))) |
114 | 101, 102,
113 | 3eqtrrd 2798 |
. . . . . . . . . 10
⊢ (𝜑 → ((topGen‘ran (,))
↾t (𝐴(,]𝐵)) = 𝐽) |
115 | 114 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → ((topGen‘ran (,))
↾t (𝐴(,]𝐵)) = 𝐽) |
116 | 100, 115 | eleqtrd 2854 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → (𝐶(,]𝐷) ∈ 𝐽) |
117 | | isopn3i 21796 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝐶(,]𝐷) ∈ 𝐽) → ((int‘𝐽)‘(𝐶(,]𝐷)) = (𝐶(,]𝐷)) |
118 | 45, 116, 117 | syl2anc 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → ((int‘𝐽)‘(𝐶(,]𝐷)) = (𝐶(,]𝐷)) |
119 | 27, 30, 118 | 3eltr4d 2867 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → 𝐵 ∈ ((int‘𝐽)‘(𝐶(,]𝐷))) |
120 | | sneq 4535 |
. . . . . . . . . . 11
⊢ (𝐷 = 𝐵 → {𝐷} = {𝐵}) |
121 | 120 | eqcomd 2764 |
. . . . . . . . . 10
⊢ (𝐷 = 𝐵 → {𝐵} = {𝐷}) |
122 | 121 | uneq2d 4070 |
. . . . . . . . 9
⊢ (𝐷 = 𝐵 → ((𝐶(,)𝐷) ∪ {𝐵}) = ((𝐶(,)𝐷) ∪ {𝐷})) |
123 | 122 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → ((𝐶(,)𝐷) ∪ {𝐵}) = ((𝐶(,)𝐷) ∪ {𝐷})) |
124 | 19 | rexrd 10742 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈
ℝ*) |
125 | | ioounsn 12922 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
< 𝐷) → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷)) |
126 | 23, 124, 20, 125 | syl3anc 1368 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷)) |
127 | 126 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷)) |
128 | 123, 127 | eqtr2d 2794 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → (𝐶(,]𝐷) = ((𝐶(,)𝐷) ∪ {𝐵})) |
129 | 128 | fveq2d 6667 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → ((int‘𝐽)‘(𝐶(,]𝐷)) = ((int‘𝐽)‘((𝐶(,)𝐷) ∪ {𝐵}))) |
130 | 119, 129 | eleqtrd 2854 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → 𝐵 ∈ ((int‘𝐽)‘((𝐶(,)𝐷) ∪ {𝐵}))) |
131 | 12, 14, 16, 17, 18, 130 | limcres 24599 |
. . . 4
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐵) = (𝐹 limℂ 𝐵)) |
132 | 8, 131 | eqtr2d 2794 |
. . 3
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → (𝐹 limℂ 𝐵) = ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐷)) |
133 | 2, 6, 132 | 3eltr3d 2866 |
. 2
⊢ ((𝜑 ∧ 𝐷 = 𝐵) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐷)) |
134 | | limcresi 24598 |
. . 3
⊢ (𝐹 limℂ 𝐷) ⊆ ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐷) |
135 | | iffalse 4432 |
. . . . . 6
⊢ (¬
𝐷 = 𝐵 → if(𝐷 = 𝐵, 𝐿, (𝐹‘𝐷)) = (𝐹‘𝐷)) |
136 | 3, 135 | syl5eq 2805 |
. . . . 5
⊢ (¬
𝐷 = 𝐵 → 𝑌 = (𝐹‘𝐷)) |
137 | 136 | adantl 485 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 = (𝐹‘𝐷)) |
138 | | ssid 3916 |
. . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ |
139 | 138 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ⊆
ℂ) |
140 | | eqid 2758 |
. . . . . . . . . . . . 13
⊢
((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld)
↾t (𝐴(,)𝐵)) |
141 | | unicntop 23501 |
. . . . . . . . . . . . . . . 16
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
142 | 141 | restid 16779 |
. . . . . . . . . . . . . . 15
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
143 | 31, 142 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
144 | 143 | eqcomi 2767 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
145 | 17, 140, 144 | cncfcn 23625 |
. . . . . . . . . . . 12
⊢ (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆
ℂ) → ((𝐴(,)𝐵)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn
(TopOpen‘ℂfld))) |
146 | 15, 139, 145 | sylancr 590 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn
(TopOpen‘ℂfld))) |
147 | 9, 146 | eleqtrd 2854 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈
(((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn
(TopOpen‘ℂfld))) |
148 | 17 | cnfldtopon 23498 |
. . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
149 | 15 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
150 | | resttopon 21875 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (𝐴(,)𝐵) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) |
151 | 148, 149,
150 | sylancr 590 |
. . . . . . . . . . 11
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) |
152 | 148 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
153 | | cncnp 21994 |
. . . . . . . . . . 11
⊢
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
(𝐹 ∈
(((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))
↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥)))) |
154 | 151, 152,
153 | syl2anc 587 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ∈
(((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))
↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥)))) |
155 | 147, 154 | mpbid 235 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥))) |
156 | 155 | simprd 499 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥)) |
157 | 156 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥)) |
158 | 33 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐴 ∈
ℝ*) |
159 | 35 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ∈
ℝ*) |
160 | 19 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ∈ ℝ) |
161 | 32, 22, 19, 63, 20 | lelttrd 10849 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 < 𝐷) |
162 | 161 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐴 < 𝐷) |
163 | 34 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ∈ ℝ) |
164 | 62 | simprd 499 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ≤ 𝐵) |
165 | 164 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ≤ 𝐵) |
166 | | neqne 2959 |
. . . . . . . . . . 11
⊢ (¬
𝐷 = 𝐵 → 𝐷 ≠ 𝐵) |
167 | 166 | necomd 3006 |
. . . . . . . . . 10
⊢ (¬
𝐷 = 𝐵 → 𝐵 ≠ 𝐷) |
168 | 167 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ≠ 𝐷) |
169 | 160, 163,
165, 168 | leneltd 10845 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 < 𝐵) |
170 | 158, 159,
160, 162, 169 | eliood 42546 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ∈ (𝐴(,)𝐵)) |
171 | | fveq2 6663 |
. . . . . . . . 9
⊢ (𝑥 = 𝐷 →
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥) = ((((TopOpen‘ℂfld)
↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝐷)) |
172 | 171 | eleq2d 2837 |
. . . . . . . 8
⊢ (𝑥 = 𝐷 → (𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥) ↔ 𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝐷))) |
173 | 172 | rspccva 3542 |
. . . . . . 7
⊢
((∀𝑥 ∈
(𝐴(,)𝐵)𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝑥) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝐷)) |
174 | 157, 170,
173 | syl2anc 587 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝐷)) |
175 | 17, 140 | cnplimc 24600 |
. . . . . . 7
⊢ (((𝐴(,)𝐵) ⊆ ℂ ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝐷) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹‘𝐷) ∈ (𝐹 limℂ 𝐷)))) |
176 | 15, 170, 175 | sylancr 590 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹 ∈
((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP
(TopOpen‘ℂfld))‘𝐷) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹‘𝐷) ∈ (𝐹 limℂ 𝐷)))) |
177 | 174, 176 | mpbid 235 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹‘𝐷) ∈ (𝐹 limℂ 𝐷))) |
178 | 177 | simprd 499 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹‘𝐷) ∈ (𝐹 limℂ 𝐷)) |
179 | 137, 178 | eqeltrd 2852 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 ∈ (𝐹 limℂ 𝐷)) |
180 | 134, 179 | sseldi 3892 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐷)) |
181 | 133, 180 | pm2.61dan 812 |
1
⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) limℂ 𝐷)) |