Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem33 Structured version   Visualization version   GIF version

Theorem fourierdlem33 46121
Description: Limit of a continuous function on an open subinterval. Upper bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem33.1 (𝜑𝐴 ∈ ℝ)
fourierdlem33.2 (𝜑𝐵 ∈ ℝ)
fourierdlem33.3 (𝜑𝐴 < 𝐵)
fourierdlem33.4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem33.5 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
fourierdlem33.6 (𝜑𝐶 ∈ ℝ)
fourierdlem33.7 (𝜑𝐷 ∈ ℝ)
fourierdlem33.8 (𝜑𝐶 < 𝐷)
fourierdlem33.ss (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
fourierdlem33.y 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹𝐷))
fourierdlem33.10 𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
Assertion
Ref Expression
fourierdlem33 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))

Proof of Theorem fourierdlem33
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem33.5 . . . 4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
21adantr 480 . . 3 ((𝜑𝐷 = 𝐵) → 𝐿 ∈ (𝐹 lim 𝐵))
3 fourierdlem33.y . . . . 5 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹𝐷))
4 iftrue 4482 . . . . 5 (𝐷 = 𝐵 → if(𝐷 = 𝐵, 𝐿, (𝐹𝐷)) = 𝐿)
53, 4eqtr2id 2777 . . . 4 (𝐷 = 𝐵𝐿 = 𝑌)
65adantl 481 . . 3 ((𝜑𝐷 = 𝐵) → 𝐿 = 𝑌)
7 oveq2 7357 . . . . 5 (𝐷 = 𝐵 → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵))
87adantl 481 . . . 4 ((𝜑𝐷 = 𝐵) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵))
9 fourierdlem33.4 . . . . . . 7 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncff 24784 . . . . . . 7 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
119, 10syl 17 . . . . . 6 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
1211adantr 480 . . . . 5 ((𝜑𝐷 = 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
13 fourierdlem33.ss . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1413adantr 480 . . . . 5 ((𝜑𝐷 = 𝐵) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
15 ioosscn 13311 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
1615a1i 11 . . . . 5 ((𝜑𝐷 = 𝐵) → (𝐴(,)𝐵) ⊆ ℂ)
17 eqid 2729 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 fourierdlem33.10 . . . . 5 𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
19 fourierdlem33.7 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
20 fourierdlem33.8 . . . . . . . . 9 (𝜑𝐶 < 𝐷)
2119leidd 11686 . . . . . . . . 9 (𝜑𝐷𝐷)
22 fourierdlem33.6 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
2322rexrd 11165 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ*)
24 elioc2 13312 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ) → (𝐷 ∈ (𝐶(,]𝐷) ↔ (𝐷 ∈ ℝ ∧ 𝐶 < 𝐷𝐷𝐷)))
2523, 19, 24syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐷 ∈ (𝐶(,]𝐷) ↔ (𝐷 ∈ ℝ ∧ 𝐶 < 𝐷𝐷𝐷)))
2619, 20, 21, 25mpbir3and 1343 . . . . . . . 8 (𝜑𝐷 ∈ (𝐶(,]𝐷))
2726adantr 480 . . . . . . 7 ((𝜑𝐷 = 𝐵) → 𝐷 ∈ (𝐶(,]𝐷))
28 eqcom 2736 . . . . . . . . 9 (𝐷 = 𝐵𝐵 = 𝐷)
2928biimpi 216 . . . . . . . 8 (𝐷 = 𝐵𝐵 = 𝐷)
3029adantl 481 . . . . . . 7 ((𝜑𝐷 = 𝐵) → 𝐵 = 𝐷)
3117cnfldtop 24669 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
32 fourierdlem33.1 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
3332rexrd 11165 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
34 fourierdlem33.2 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
3534rexrd 11165 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
36 fourierdlem33.3 . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
37 ioounsn 13380 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
3833, 35, 36, 37syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
39 ovex 7382 . . . . . . . . . . . . 13 (𝐴(,]𝐵) ∈ V
4039a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,]𝐵) ∈ V)
4138, 40eqeltrd 2828 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
42 resttop 23045 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
4331, 41, 42sylancr 587 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
4418, 43eqeltrid 2832 . . . . . . . . 9 (𝜑𝐽 ∈ Top)
4544adantr 480 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → 𝐽 ∈ Top)
46 oveq2 7357 . . . . . . . . . . 11 (𝐷 = 𝐵 → (𝐶(,]𝐷) = (𝐶(,]𝐵))
4746adantl 481 . . . . . . . . . 10 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) = (𝐶(,]𝐵))
4823adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ*)
49 pnfxr 11169 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
5049a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → +∞ ∈ ℝ*)
51 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,]𝐵))
5234adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐵 ∈ ℝ)
53 elioc2 13312 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
5448, 52, 53syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
5551, 54mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵))
5655simp1d 1142 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ)
5755simp2d 1143 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
5856ltpnfd 13023 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 < +∞)
5948, 50, 56, 57, 58eliood 45479 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
6032adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ)
6122adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ)
6232, 34, 22, 19, 20, 13fourierdlem10 46098 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴𝐶𝐷𝐵))
6362simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐶)
6463adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴𝐶)
6560, 61, 56, 64, 57lelttrd 11274 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 < 𝑥)
6655simp3d 1144 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
6733adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ*)
68 elioc2 13312 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
6967, 52, 68syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
7056, 65, 66, 69mpbir3and 1343 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
7159, 70elind 4151 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
72 elinel1 4152 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
73 elioore 13278 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐶(,)+∞) → 𝑥 ∈ ℝ)
7472, 73syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
7574adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ ℝ)
7623adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 ∈ ℝ*)
7749a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → +∞ ∈ ℝ*)
7872adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,)+∞))
79 ioogtlb 45476 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐶(,)+∞)) → 𝐶 < 𝑥)
8076, 77, 78, 79syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 < 𝑥)
81 elinel2 4153 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
8281adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐴(,]𝐵))
8333adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐴 ∈ ℝ*)
8434adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐵 ∈ ℝ)
8583, 84, 68syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
8682, 85mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵))
8786simp3d 1144 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥𝐵)
8876, 84, 53syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
8975, 80, 87, 88mpbir3and 1343 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,]𝐵))
9071, 89impbida 800 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐶(,]𝐵) ↔ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))))
9190eqrdv 2727 . . . . . . . . . . . 12 (𝜑 → (𝐶(,]𝐵) = ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
92 retop 24647 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
9392a1i 11 . . . . . . . . . . . . 13 (𝜑 → (topGen‘ran (,)) ∈ Top)
94 iooretop 24651 . . . . . . . . . . . . . 14 (𝐶(,)+∞) ∈ (topGen‘ran (,))
9594a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐶(,)+∞) ∈ (topGen‘ran (,)))
96 elrestr 17332 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,]𝐵) ∈ V ∧ (𝐶(,)+∞) ∈ (topGen‘ran (,))) → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9793, 40, 95, 96syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9891, 97eqeltrd 2828 . . . . . . . . . . 11 (𝜑 → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9998adantr 480 . . . . . . . . . 10 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
10047, 99eqeltrd 2828 . . . . . . . . 9 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
10118a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
10238oveq2d 7365 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
10331a1i 11 . . . . . . . . . . . . 13 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
104 iocssre 13330 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
10533, 34, 104syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
106 reex 11100 . . . . . . . . . . . . . 14 ℝ ∈ V
107106a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
108 restabs 23050 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,]𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
109103, 105, 107, 108syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
110 tgioo4 24691 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
111110eqcomi 2738 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
112111oveq1i 7359 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴(,]𝐵))
113109, 112eqtr3di 2779 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
114101, 102, 1133eqtrrd 2769 . . . . . . . . . 10 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)) = 𝐽)
115114adantr 480 . . . . . . . . 9 ((𝜑𝐷 = 𝐵) → ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)) = 𝐽)
116100, 115eleqtrd 2830 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) ∈ 𝐽)
117 isopn3i 22967 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐶(,]𝐷) ∈ 𝐽) → ((int‘𝐽)‘(𝐶(,]𝐷)) = (𝐶(,]𝐷))
11845, 116, 117syl2anc 584 . . . . . . 7 ((𝜑𝐷 = 𝐵) → ((int‘𝐽)‘(𝐶(,]𝐷)) = (𝐶(,]𝐷))
11927, 30, 1183eltr4d 2843 . . . . . 6 ((𝜑𝐷 = 𝐵) → 𝐵 ∈ ((int‘𝐽)‘(𝐶(,]𝐷)))
120 sneq 4587 . . . . . . . . . . 11 (𝐷 = 𝐵 → {𝐷} = {𝐵})
121120eqcomd 2735 . . . . . . . . . 10 (𝐷 = 𝐵 → {𝐵} = {𝐷})
122121uneq2d 4119 . . . . . . . . 9 (𝐷 = 𝐵 → ((𝐶(,)𝐷) ∪ {𝐵}) = ((𝐶(,)𝐷) ∪ {𝐷}))
123122adantl 481 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → ((𝐶(,)𝐷) ∪ {𝐵}) = ((𝐶(,)𝐷) ∪ {𝐷}))
12419rexrd 11165 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ*)
125 ioounsn 13380 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷) → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
12623, 124, 20, 125syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
127126adantr 480 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
128123, 127eqtr2d 2765 . . . . . . 7 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) = ((𝐶(,)𝐷) ∪ {𝐵}))
129128fveq2d 6826 . . . . . 6 ((𝜑𝐷 = 𝐵) → ((int‘𝐽)‘(𝐶(,]𝐷)) = ((int‘𝐽)‘((𝐶(,)𝐷) ∪ {𝐵})))
130119, 129eleqtrd 2830 . . . . 5 ((𝜑𝐷 = 𝐵) → 𝐵 ∈ ((int‘𝐽)‘((𝐶(,)𝐷) ∪ {𝐵})))
13112, 14, 16, 17, 18, 130limcres 25785 . . . 4 ((𝜑𝐷 = 𝐵) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵) = (𝐹 lim 𝐵))
1328, 131eqtr2d 2765 . . 3 ((𝜑𝐷 = 𝐵) → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
1332, 6, 1323eltr3d 2842 . 2 ((𝜑𝐷 = 𝐵) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
134 limcresi 25784 . . 3 (𝐹 lim 𝐷) ⊆ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷)
135 iffalse 4485 . . . . . 6 𝐷 = 𝐵 → if(𝐷 = 𝐵, 𝐿, (𝐹𝐷)) = (𝐹𝐷))
1363, 135eqtrid 2776 . . . . 5 𝐷 = 𝐵𝑌 = (𝐹𝐷))
137136adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 = (𝐹𝐷))
138 ssid 3958 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
139138a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
140 eqid 2729 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
141 unicntop 24671 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
142141restid 17337 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
14331, 142ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
144143eqcomi 2738 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
14517, 140, 144cncfcn 24801 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
14615, 139, 145sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
1479, 146eleqtrd 2830 . . . . . . . . . 10 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
14817cnfldtopon 24668 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
14915a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
150 resttopon 23046 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
151148, 149, 150sylancr 587 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
152148a1i 11 . . . . . . . . . . 11 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
153 cncnp 23165 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
154151, 152, 153syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
155147, 154mpbid 232 . . . . . . . . 9 (𝜑 → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
156155simprd 495 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
157156adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
15833adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐴 ∈ ℝ*)
15935adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ∈ ℝ*)
16019adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ∈ ℝ)
16132, 22, 19, 63, 20lelttrd 11274 . . . . . . . . 9 (𝜑𝐴 < 𝐷)
162161adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐴 < 𝐷)
16334adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ∈ ℝ)
16462simprd 495 . . . . . . . . . 10 (𝜑𝐷𝐵)
165164adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷𝐵)
166 neqne 2933 . . . . . . . . . . 11 𝐷 = 𝐵𝐷𝐵)
167166necomd 2980 . . . . . . . . . 10 𝐷 = 𝐵𝐵𝐷)
168167adantl 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵𝐷)
169160, 163, 165, 168leneltd 11270 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 < 𝐵)
170158, 159, 160, 162, 169eliood 45479 . . . . . . 7 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ∈ (𝐴(,)𝐵))
171 fveq2 6822 . . . . . . . . 9 (𝑥 = 𝐷 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
172171eleq2d 2814 . . . . . . . 8 (𝑥 = 𝐷 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ↔ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷)))
173172rspccva 3576 . . . . . . 7 ((∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
174157, 170, 173syl2anc 584 . . . . . 6 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
17517, 140cnplimc 25786 . . . . . . 7 (((𝐴(,)𝐵) ⊆ ℂ ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷))))
17615, 170, 175sylancr 587 . . . . . 6 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷))))
177174, 176mpbid 232 . . . . 5 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷)))
178177simprd 495 . . . 4 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹𝐷) ∈ (𝐹 lim 𝐷))
179137, 178eqeltrd 2828 . . 3 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 ∈ (𝐹 lim 𝐷))
180134, 179sselid 3933 . 2 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
181133, 180pm2.61dan 812 1 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3436  cun 3901  cin 3902  wss 3903  ifcif 4476  {csn 4577   class class class wbr 5092  ran crn 5620  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  (,)cioo 13248  (,]cioc 13249  t crest 17324  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21261  Topctop 22778  TopOnctopon 22795  intcnt 22902   Cn ccn 23109   CnP ccnp 23110  cnccncf 24767   lim climc 25761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-icc 13255  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-ntr 22905  df-cn 23112  df-cnp 23113  df-xms 24206  df-ms 24207  df-cncf 24769  df-limc 25765
This theorem is referenced by:  fourierdlem49  46136  fourierdlem76  46163  fourierdlem91  46178
  Copyright terms: Public domain W3C validator