Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem33 Structured version   Visualization version   GIF version

Theorem fourierdlem33 43193
Description: Limit of a continuous function on an open subinterval. Upper bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem33.1 (𝜑𝐴 ∈ ℝ)
fourierdlem33.2 (𝜑𝐵 ∈ ℝ)
fourierdlem33.3 (𝜑𝐴 < 𝐵)
fourierdlem33.4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem33.5 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
fourierdlem33.6 (𝜑𝐶 ∈ ℝ)
fourierdlem33.7 (𝜑𝐷 ∈ ℝ)
fourierdlem33.8 (𝜑𝐶 < 𝐷)
fourierdlem33.ss (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
fourierdlem33.y 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹𝐷))
fourierdlem33.10 𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
Assertion
Ref Expression
fourierdlem33 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))

Proof of Theorem fourierdlem33
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem33.5 . . . 4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
21adantr 484 . . 3 ((𝜑𝐷 = 𝐵) → 𝐿 ∈ (𝐹 lim 𝐵))
3 fourierdlem33.y . . . . 5 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹𝐷))
4 iftrue 4429 . . . . 5 (𝐷 = 𝐵 → if(𝐷 = 𝐵, 𝐿, (𝐹𝐷)) = 𝐿)
53, 4syl5req 2806 . . . 4 (𝐷 = 𝐵𝐿 = 𝑌)
65adantl 485 . . 3 ((𝜑𝐷 = 𝐵) → 𝐿 = 𝑌)
7 oveq2 7164 . . . . 5 (𝐷 = 𝐵 → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵))
87adantl 485 . . . 4 ((𝜑𝐷 = 𝐵) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵))
9 fourierdlem33.4 . . . . . . 7 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncff 23608 . . . . . . 7 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
119, 10syl 17 . . . . . 6 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
1211adantr 484 . . . . 5 ((𝜑𝐷 = 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
13 fourierdlem33.ss . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1413adantr 484 . . . . 5 ((𝜑𝐷 = 𝐵) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
15 ioosscn 12854 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
1615a1i 11 . . . . 5 ((𝜑𝐷 = 𝐵) → (𝐴(,)𝐵) ⊆ ℂ)
17 eqid 2758 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 fourierdlem33.10 . . . . 5 𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
19 fourierdlem33.7 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
20 fourierdlem33.8 . . . . . . . . 9 (𝜑𝐶 < 𝐷)
2119leidd 11257 . . . . . . . . 9 (𝜑𝐷𝐷)
22 fourierdlem33.6 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
2322rexrd 10742 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ*)
24 elioc2 12855 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ) → (𝐷 ∈ (𝐶(,]𝐷) ↔ (𝐷 ∈ ℝ ∧ 𝐶 < 𝐷𝐷𝐷)))
2523, 19, 24syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐷 ∈ (𝐶(,]𝐷) ↔ (𝐷 ∈ ℝ ∧ 𝐶 < 𝐷𝐷𝐷)))
2619, 20, 21, 25mpbir3and 1339 . . . . . . . 8 (𝜑𝐷 ∈ (𝐶(,]𝐷))
2726adantr 484 . . . . . . 7 ((𝜑𝐷 = 𝐵) → 𝐷 ∈ (𝐶(,]𝐷))
28 eqcom 2765 . . . . . . . . 9 (𝐷 = 𝐵𝐵 = 𝐷)
2928biimpi 219 . . . . . . . 8 (𝐷 = 𝐵𝐵 = 𝐷)
3029adantl 485 . . . . . . 7 ((𝜑𝐷 = 𝐵) → 𝐵 = 𝐷)
3117cnfldtop 23499 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
32 fourierdlem33.1 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
3332rexrd 10742 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
34 fourierdlem33.2 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
3534rexrd 10742 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
36 fourierdlem33.3 . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
37 ioounsn 12922 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
3833, 35, 36, 37syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
39 ovex 7189 . . . . . . . . . . . . 13 (𝐴(,]𝐵) ∈ V
4039a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,]𝐵) ∈ V)
4138, 40eqeltrd 2852 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
42 resttop 21874 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
4331, 41, 42sylancr 590 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
4418, 43eqeltrid 2856 . . . . . . . . 9 (𝜑𝐽 ∈ Top)
4544adantr 484 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → 𝐽 ∈ Top)
46 oveq2 7164 . . . . . . . . . . 11 (𝐷 = 𝐵 → (𝐶(,]𝐷) = (𝐶(,]𝐵))
4746adantl 485 . . . . . . . . . 10 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) = (𝐶(,]𝐵))
4823adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ*)
49 pnfxr 10746 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
5049a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → +∞ ∈ ℝ*)
51 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,]𝐵))
5234adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐵 ∈ ℝ)
53 elioc2 12855 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
5448, 52, 53syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
5551, 54mpbid 235 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵))
5655simp1d 1139 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ)
5755simp2d 1140 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
5856ltpnfd 12570 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 < +∞)
5948, 50, 56, 57, 58eliood 42546 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
6032adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ)
6122adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ)
6232, 34, 22, 19, 20, 13fourierdlem10 43170 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴𝐶𝐷𝐵))
6362simpld 498 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐶)
6463adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴𝐶)
6560, 61, 56, 64, 57lelttrd 10849 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 < 𝑥)
6655simp3d 1141 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
6733adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ*)
68 elioc2 12855 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
6967, 52, 68syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
7056, 65, 66, 69mpbir3and 1339 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
7159, 70elind 4101 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
72 elinel1 4102 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
73 elioore 12822 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐶(,)+∞) → 𝑥 ∈ ℝ)
7472, 73syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
7574adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ ℝ)
7623adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 ∈ ℝ*)
7749a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → +∞ ∈ ℝ*)
7872adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,)+∞))
79 ioogtlb 42543 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐶(,)+∞)) → 𝐶 < 𝑥)
8076, 77, 78, 79syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 < 𝑥)
81 elinel2 4103 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
8281adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐴(,]𝐵))
8333adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐴 ∈ ℝ*)
8434adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐵 ∈ ℝ)
8583, 84, 68syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
8682, 85mpbid 235 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵))
8786simp3d 1141 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥𝐵)
8876, 84, 53syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
8975, 80, 87, 88mpbir3and 1339 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,]𝐵))
9071, 89impbida 800 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐶(,]𝐵) ↔ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))))
9190eqrdv 2756 . . . . . . . . . . . 12 (𝜑 → (𝐶(,]𝐵) = ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
92 retop 23477 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
9392a1i 11 . . . . . . . . . . . . 13 (𝜑 → (topGen‘ran (,)) ∈ Top)
94 iooretop 23481 . . . . . . . . . . . . . 14 (𝐶(,)+∞) ∈ (topGen‘ran (,))
9594a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐶(,)+∞) ∈ (topGen‘ran (,)))
96 elrestr 16774 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,]𝐵) ∈ V ∧ (𝐶(,)+∞) ∈ (topGen‘ran (,))) → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9793, 40, 95, 96syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9891, 97eqeltrd 2852 . . . . . . . . . . 11 (𝜑 → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9998adantr 484 . . . . . . . . . 10 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
10047, 99eqeltrd 2852 . . . . . . . . 9 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
10118a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
10238oveq2d 7172 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
10317tgioo2 23518 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
104103eqcomi 2767 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
105104oveq1i 7166 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴(,]𝐵))
10631a1i 11 . . . . . . . . . . . . 13 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
107 iocssre 12872 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
10833, 34, 107syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
109 reex 10679 . . . . . . . . . . . . . 14 ℝ ∈ V
110109a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
111 restabs 21879 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,]𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
112106, 108, 110, 111syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
113105, 112syl5reqr 2808 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
114101, 102, 1133eqtrrd 2798 . . . . . . . . . 10 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)) = 𝐽)
115114adantr 484 . . . . . . . . 9 ((𝜑𝐷 = 𝐵) → ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)) = 𝐽)
116100, 115eleqtrd 2854 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) ∈ 𝐽)
117 isopn3i 21796 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐶(,]𝐷) ∈ 𝐽) → ((int‘𝐽)‘(𝐶(,]𝐷)) = (𝐶(,]𝐷))
11845, 116, 117syl2anc 587 . . . . . . 7 ((𝜑𝐷 = 𝐵) → ((int‘𝐽)‘(𝐶(,]𝐷)) = (𝐶(,]𝐷))
11927, 30, 1183eltr4d 2867 . . . . . 6 ((𝜑𝐷 = 𝐵) → 𝐵 ∈ ((int‘𝐽)‘(𝐶(,]𝐷)))
120 sneq 4535 . . . . . . . . . . 11 (𝐷 = 𝐵 → {𝐷} = {𝐵})
121120eqcomd 2764 . . . . . . . . . 10 (𝐷 = 𝐵 → {𝐵} = {𝐷})
122121uneq2d 4070 . . . . . . . . 9 (𝐷 = 𝐵 → ((𝐶(,)𝐷) ∪ {𝐵}) = ((𝐶(,)𝐷) ∪ {𝐷}))
123122adantl 485 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → ((𝐶(,)𝐷) ∪ {𝐵}) = ((𝐶(,)𝐷) ∪ {𝐷}))
12419rexrd 10742 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ*)
125 ioounsn 12922 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷) → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
12623, 124, 20, 125syl3anc 1368 . . . . . . . . 9 (𝜑 → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
127126adantr 484 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
128123, 127eqtr2d 2794 . . . . . . 7 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) = ((𝐶(,)𝐷) ∪ {𝐵}))
129128fveq2d 6667 . . . . . 6 ((𝜑𝐷 = 𝐵) → ((int‘𝐽)‘(𝐶(,]𝐷)) = ((int‘𝐽)‘((𝐶(,)𝐷) ∪ {𝐵})))
130119, 129eleqtrd 2854 . . . . 5 ((𝜑𝐷 = 𝐵) → 𝐵 ∈ ((int‘𝐽)‘((𝐶(,)𝐷) ∪ {𝐵})))
13112, 14, 16, 17, 18, 130limcres 24599 . . . 4 ((𝜑𝐷 = 𝐵) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵) = (𝐹 lim 𝐵))
1328, 131eqtr2d 2794 . . 3 ((𝜑𝐷 = 𝐵) → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
1332, 6, 1323eltr3d 2866 . 2 ((𝜑𝐷 = 𝐵) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
134 limcresi 24598 . . 3 (𝐹 lim 𝐷) ⊆ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷)
135 iffalse 4432 . . . . . 6 𝐷 = 𝐵 → if(𝐷 = 𝐵, 𝐿, (𝐹𝐷)) = (𝐹𝐷))
1363, 135syl5eq 2805 . . . . 5 𝐷 = 𝐵𝑌 = (𝐹𝐷))
137136adantl 485 . . . 4 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 = (𝐹𝐷))
138 ssid 3916 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
139138a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
140 eqid 2758 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
141 unicntop 23501 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
142141restid 16779 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
14331, 142ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
144143eqcomi 2767 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
14517, 140, 144cncfcn 23625 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
14615, 139, 145sylancr 590 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
1479, 146eleqtrd 2854 . . . . . . . . . 10 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
14817cnfldtopon 23498 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
14915a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
150 resttopon 21875 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
151148, 149, 150sylancr 590 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
152148a1i 11 . . . . . . . . . . 11 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
153 cncnp 21994 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
154151, 152, 153syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
155147, 154mpbid 235 . . . . . . . . 9 (𝜑 → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
156155simprd 499 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
157156adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
15833adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐴 ∈ ℝ*)
15935adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ∈ ℝ*)
16019adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ∈ ℝ)
16132, 22, 19, 63, 20lelttrd 10849 . . . . . . . . 9 (𝜑𝐴 < 𝐷)
162161adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐴 < 𝐷)
16334adantr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ∈ ℝ)
16462simprd 499 . . . . . . . . . 10 (𝜑𝐷𝐵)
165164adantr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷𝐵)
166 neqne 2959 . . . . . . . . . . 11 𝐷 = 𝐵𝐷𝐵)
167166necomd 3006 . . . . . . . . . 10 𝐷 = 𝐵𝐵𝐷)
168167adantl 485 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵𝐷)
169160, 163, 165, 168leneltd 10845 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 < 𝐵)
170158, 159, 160, 162, 169eliood 42546 . . . . . . 7 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ∈ (𝐴(,)𝐵))
171 fveq2 6663 . . . . . . . . 9 (𝑥 = 𝐷 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
172171eleq2d 2837 . . . . . . . 8 (𝑥 = 𝐷 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ↔ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷)))
173172rspccva 3542 . . . . . . 7 ((∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
174157, 170, 173syl2anc 587 . . . . . 6 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
17517, 140cnplimc 24600 . . . . . . 7 (((𝐴(,)𝐵) ⊆ ℂ ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷))))
17615, 170, 175sylancr 590 . . . . . 6 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷))))
177174, 176mpbid 235 . . . . 5 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷)))
178177simprd 499 . . . 4 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹𝐷) ∈ (𝐹 lim 𝐷))
179137, 178eqeltrd 2852 . . 3 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 ∈ (𝐹 lim 𝐷))
180134, 179sseldi 3892 . 2 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
181133, 180pm2.61dan 812 1 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  Vcvv 3409  cun 3858  cin 3859  wss 3860  ifcif 4423  {csn 4525   class class class wbr 5036  ran crn 5529  cres 5530  wf 6336  cfv 6340  (class class class)co 7156  cc 10586  cr 10587  +∞cpnf 10723  *cxr 10725   < clt 10726  cle 10727  (,)cioo 12792  (,]cioc 12793  t crest 16766  TopOpenctopn 16767  topGenctg 16783  fldccnfld 20180  Topctop 21607  TopOnctopon 21624  intcnt 21731   Cn ccn 21938   CnP ccnp 21939  cnccncf 23591   lim climc 24575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-pm 8425  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fi 8921  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-q 12402  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-ioo 12796  df-ioc 12797  df-icc 12799  df-fz 12953  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-plusg 16650  df-mulr 16651  df-starv 16652  df-tset 16656  df-ple 16657  df-ds 16659  df-unif 16660  df-rest 16768  df-topn 16769  df-topgen 16789  df-psmet 20172  df-xmet 20173  df-met 20174  df-bl 20175  df-mopn 20176  df-cnfld 20181  df-top 21608  df-topon 21625  df-topsp 21647  df-bases 21660  df-ntr 21734  df-cn 21941  df-cnp 21942  df-xms 23036  df-ms 23037  df-cncf 23593  df-limc 24579
This theorem is referenced by:  fourierdlem49  43208  fourierdlem76  43235  fourierdlem91  43250
  Copyright terms: Public domain W3C validator