Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem33 Structured version   Visualization version   GIF version

Theorem fourierdlem33 40994
Description: Limit of a continuous function on an open subinterval. Upper bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem33.1 (𝜑𝐴 ∈ ℝ)
fourierdlem33.2 (𝜑𝐵 ∈ ℝ)
fourierdlem33.3 (𝜑𝐴 < 𝐵)
fourierdlem33.4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem33.5 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
fourierdlem33.6 (𝜑𝐶 ∈ ℝ)
fourierdlem33.7 (𝜑𝐷 ∈ ℝ)
fourierdlem33.8 (𝜑𝐶 < 𝐷)
fourierdlem33.ss (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
fourierdlem33.y 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹𝐷))
fourierdlem33.10 𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
Assertion
Ref Expression
fourierdlem33 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))

Proof of Theorem fourierdlem33
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem33.5 . . . 4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
21adantr 472 . . 3 ((𝜑𝐷 = 𝐵) → 𝐿 ∈ (𝐹 lim 𝐵))
3 fourierdlem33.y . . . . 5 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹𝐷))
4 iftrue 4249 . . . . 5 (𝐷 = 𝐵 → if(𝐷 = 𝐵, 𝐿, (𝐹𝐷)) = 𝐿)
53, 4syl5req 2812 . . . 4 (𝐷 = 𝐵𝐿 = 𝑌)
65adantl 473 . . 3 ((𝜑𝐷 = 𝐵) → 𝐿 = 𝑌)
7 oveq2 6850 . . . . 5 (𝐷 = 𝐵 → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵))
87adantl 473 . . . 4 ((𝜑𝐷 = 𝐵) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵))
9 fourierdlem33.4 . . . . . . 7 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncff 22975 . . . . . . 7 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
119, 10syl 17 . . . . . 6 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
1211adantr 472 . . . . 5 ((𝜑𝐷 = 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
13 fourierdlem33.ss . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1413adantr 472 . . . . 5 ((𝜑𝐷 = 𝐵) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
15 ioosscn 40358 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
1615a1i 11 . . . . 5 ((𝜑𝐷 = 𝐵) → (𝐴(,)𝐵) ⊆ ℂ)
17 eqid 2765 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 fourierdlem33.10 . . . . 5 𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
19 fourierdlem33.7 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
20 fourierdlem33.8 . . . . . . . . 9 (𝜑𝐶 < 𝐷)
2119leidd 10848 . . . . . . . . 9 (𝜑𝐷𝐷)
22 fourierdlem33.6 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
2322rexrd 10343 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ*)
24 elioc2 12438 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ) → (𝐷 ∈ (𝐶(,]𝐷) ↔ (𝐷 ∈ ℝ ∧ 𝐶 < 𝐷𝐷𝐷)))
2523, 19, 24syl2anc 579 . . . . . . . . 9 (𝜑 → (𝐷 ∈ (𝐶(,]𝐷) ↔ (𝐷 ∈ ℝ ∧ 𝐶 < 𝐷𝐷𝐷)))
2619, 20, 21, 25mpbir3and 1442 . . . . . . . 8 (𝜑𝐷 ∈ (𝐶(,]𝐷))
2726adantr 472 . . . . . . 7 ((𝜑𝐷 = 𝐵) → 𝐷 ∈ (𝐶(,]𝐷))
28 eqcom 2772 . . . . . . . . 9 (𝐷 = 𝐵𝐵 = 𝐷)
2928biimpi 207 . . . . . . . 8 (𝐷 = 𝐵𝐵 = 𝐷)
3029adantl 473 . . . . . . 7 ((𝜑𝐷 = 𝐵) → 𝐵 = 𝐷)
3117cnfldtop 22866 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
32 fourierdlem33.1 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
3332rexrd 10343 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
34 fourierdlem33.2 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
3534rexrd 10343 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
36 fourierdlem33.3 . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
37 ioounsn 12503 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
3833, 35, 36, 37syl3anc 1490 . . . . . . . . . . . 12 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
39 ovex 6874 . . . . . . . . . . . . 13 (𝐴(,]𝐵) ∈ V
4039a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,]𝐵) ∈ V)
4138, 40eqeltrd 2844 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
42 resttop 21244 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
4331, 41, 42sylancr 581 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
4418, 43syl5eqel 2848 . . . . . . . . 9 (𝜑𝐽 ∈ Top)
4544adantr 472 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → 𝐽 ∈ Top)
46 oveq2 6850 . . . . . . . . . . 11 (𝐷 = 𝐵 → (𝐶(,]𝐷) = (𝐶(,]𝐵))
4746adantl 473 . . . . . . . . . 10 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) = (𝐶(,]𝐵))
4823adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ*)
49 pnfxr 10346 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
5049a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → +∞ ∈ ℝ*)
51 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,]𝐵))
5234adantr 472 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐵 ∈ ℝ)
53 elioc2 12438 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
5448, 52, 53syl2anc 579 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
5551, 54mpbid 223 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵))
5655simp1d 1172 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ)
5755simp2d 1173 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
5856ltpnfd 12155 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 < +∞)
5948, 50, 56, 57, 58eliood 40362 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
6032adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ)
6122adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ)
6232, 34, 22, 19, 20, 13fourierdlem10 40971 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴𝐶𝐷𝐵))
6362simpld 488 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐶)
6463adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴𝐶)
6560, 61, 56, 64, 57lelttrd 10449 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 < 𝑥)
6655simp3d 1174 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
6733adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ*)
68 elioc2 12438 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
6967, 52, 68syl2anc 579 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
7056, 65, 66, 69mpbir3and 1442 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
7159, 70elind 3960 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
72 elinel1 3961 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
73 elioore 12407 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐶(,)+∞) → 𝑥 ∈ ℝ)
7472, 73syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
7574adantl 473 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ ℝ)
7623adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 ∈ ℝ*)
7749a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → +∞ ∈ ℝ*)
7872adantl 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,)+∞))
79 ioogtlb 40359 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐶(,)+∞)) → 𝐶 < 𝑥)
8076, 77, 78, 79syl3anc 1490 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 < 𝑥)
81 elinel2 3962 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
8281adantl 473 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐴(,]𝐵))
8333adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐴 ∈ ℝ*)
8434adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐵 ∈ ℝ)
8583, 84, 68syl2anc 579 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
8682, 85mpbid 223 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵))
8786simp3d 1174 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥𝐵)
8876, 84, 53syl2anc 579 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
8975, 80, 87, 88mpbir3and 1442 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,]𝐵))
9071, 89impbida 835 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐶(,]𝐵) ↔ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))))
9190eqrdv 2763 . . . . . . . . . . . 12 (𝜑 → (𝐶(,]𝐵) = ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
92 retop 22844 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
9392a1i 11 . . . . . . . . . . . . 13 (𝜑 → (topGen‘ran (,)) ∈ Top)
94 iooretop 22848 . . . . . . . . . . . . . 14 (𝐶(,)+∞) ∈ (topGen‘ran (,))
9594a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐶(,)+∞) ∈ (topGen‘ran (,)))
96 elrestr 16355 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,]𝐵) ∈ V ∧ (𝐶(,)+∞) ∈ (topGen‘ran (,))) → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9793, 40, 95, 96syl3anc 1490 . . . . . . . . . . . 12 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9891, 97eqeltrd 2844 . . . . . . . . . . 11 (𝜑 → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9998adantr 472 . . . . . . . . . 10 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
10047, 99eqeltrd 2844 . . . . . . . . 9 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
10118a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
10238oveq2d 6858 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
10317tgioo2 22885 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
104103eqcomi 2774 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
105104oveq1i 6852 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴(,]𝐵))
10631a1i 11 . . . . . . . . . . . . 13 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
107 iocssre 12455 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
10833, 34, 107syl2anc 579 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
109 reex 10280 . . . . . . . . . . . . . 14 ℝ ∈ V
110109a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
111 restabs 21249 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,]𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
112106, 108, 110, 111syl3anc 1490 . . . . . . . . . . . 12 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
113105, 112syl5reqr 2814 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
114101, 102, 1133eqtrrd 2804 . . . . . . . . . 10 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)) = 𝐽)
115114adantr 472 . . . . . . . . 9 ((𝜑𝐷 = 𝐵) → ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)) = 𝐽)
116100, 115eleqtrd 2846 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) ∈ 𝐽)
117 isopn3i 21166 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐶(,]𝐷) ∈ 𝐽) → ((int‘𝐽)‘(𝐶(,]𝐷)) = (𝐶(,]𝐷))
11845, 116, 117syl2anc 579 . . . . . . 7 ((𝜑𝐷 = 𝐵) → ((int‘𝐽)‘(𝐶(,]𝐷)) = (𝐶(,]𝐷))
11927, 30, 1183eltr4d 2859 . . . . . 6 ((𝜑𝐷 = 𝐵) → 𝐵 ∈ ((int‘𝐽)‘(𝐶(,]𝐷)))
120 sneq 4344 . . . . . . . . . . 11 (𝐷 = 𝐵 → {𝐷} = {𝐵})
121120eqcomd 2771 . . . . . . . . . 10 (𝐷 = 𝐵 → {𝐵} = {𝐷})
122121uneq2d 3929 . . . . . . . . 9 (𝐷 = 𝐵 → ((𝐶(,)𝐷) ∪ {𝐵}) = ((𝐶(,)𝐷) ∪ {𝐷}))
123122adantl 473 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → ((𝐶(,)𝐷) ∪ {𝐵}) = ((𝐶(,)𝐷) ∪ {𝐷}))
12419rexrd 10343 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ*)
125 ioounsn 12503 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷) → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
12623, 124, 20, 125syl3anc 1490 . . . . . . . . 9 (𝜑 → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
127126adantr 472 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
128123, 127eqtr2d 2800 . . . . . . 7 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) = ((𝐶(,)𝐷) ∪ {𝐵}))
129128fveq2d 6379 . . . . . 6 ((𝜑𝐷 = 𝐵) → ((int‘𝐽)‘(𝐶(,]𝐷)) = ((int‘𝐽)‘((𝐶(,)𝐷) ∪ {𝐵})))
130119, 129eleqtrd 2846 . . . . 5 ((𝜑𝐷 = 𝐵) → 𝐵 ∈ ((int‘𝐽)‘((𝐶(,)𝐷) ∪ {𝐵})))
13112, 14, 16, 17, 18, 130limcres 23941 . . . 4 ((𝜑𝐷 = 𝐵) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵) = (𝐹 lim 𝐵))
1328, 131eqtr2d 2800 . . 3 ((𝜑𝐷 = 𝐵) → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
1332, 6, 1323eltr3d 2858 . 2 ((𝜑𝐷 = 𝐵) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
134 limcresi 23940 . . 3 (𝐹 lim 𝐷) ⊆ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷)
135 iffalse 4252 . . . . . 6 𝐷 = 𝐵 → if(𝐷 = 𝐵, 𝐿, (𝐹𝐷)) = (𝐹𝐷))
1363, 135syl5eq 2811 . . . . 5 𝐷 = 𝐵𝑌 = (𝐹𝐷))
137136adantl 473 . . . 4 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 = (𝐹𝐷))
138 ssid 3783 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
139138a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
140 eqid 2765 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
141 unicntop 22868 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
142141restid 16360 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
14331, 142ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
144143eqcomi 2774 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
14517, 140, 144cncfcn 22991 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
14615, 139, 145sylancr 581 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
1479, 146eleqtrd 2846 . . . . . . . . . 10 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
14817cnfldtopon 22865 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
14915a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
150 resttopon 21245 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
151148, 149, 150sylancr 581 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
152148a1i 11 . . . . . . . . . . 11 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
153 cncnp 21364 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
154151, 152, 153syl2anc 579 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
155147, 154mpbid 223 . . . . . . . . 9 (𝜑 → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
156155simprd 489 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
157156adantr 472 . . . . . . 7 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
15833adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐴 ∈ ℝ*)
15935adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ∈ ℝ*)
16019adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ∈ ℝ)
16132, 22, 19, 63, 20lelttrd 10449 . . . . . . . . 9 (𝜑𝐴 < 𝐷)
162161adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐴 < 𝐷)
16334adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ∈ ℝ)
16462simprd 489 . . . . . . . . . 10 (𝜑𝐷𝐵)
165164adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷𝐵)
166 neqne 2945 . . . . . . . . . . 11 𝐷 = 𝐵𝐷𝐵)
167166necomd 2992 . . . . . . . . . 10 𝐷 = 𝐵𝐵𝐷)
168167adantl 473 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵𝐷)
169160, 163, 165, 168leneltd 10445 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 < 𝐵)
170158, 159, 160, 162, 169eliood 40362 . . . . . . 7 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ∈ (𝐴(,)𝐵))
171 fveq2 6375 . . . . . . . . 9 (𝑥 = 𝐷 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
172171eleq2d 2830 . . . . . . . 8 (𝑥 = 𝐷 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ↔ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷)))
173172rspccva 3460 . . . . . . 7 ((∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
174157, 170, 173syl2anc 579 . . . . . 6 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
17517, 140cnplimc 23942 . . . . . . 7 (((𝐴(,)𝐵) ⊆ ℂ ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷))))
17615, 170, 175sylancr 581 . . . . . 6 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷))))
177174, 176mpbid 223 . . . . 5 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷)))
178177simprd 489 . . . 4 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹𝐷) ∈ (𝐹 lim 𝐷))
179137, 178eqeltrd 2844 . . 3 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 ∈ (𝐹 lim 𝐷))
180134, 179sseldi 3759 . 2 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
181133, 180pm2.61dan 847 1 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  Vcvv 3350  cun 3730  cin 3731  wss 3732  ifcif 4243  {csn 4334   class class class wbr 4809  ran crn 5278  cres 5279  wf 6064  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  +∞cpnf 10325  *cxr 10327   < clt 10328  cle 10329  (,)cioo 12377  (,]cioc 12378  t crest 16347  TopOpenctopn 16348  topGenctg 16364  fldccnfld 20019  Topctop 20977  TopOnctopon 20994  intcnt 21101   Cn ccn 21308   CnP ccnp 21309  cnccncf 22958   lim climc 23917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fi 8524  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-icc 12384  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-plusg 16227  df-mulr 16228  df-starv 16229  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-rest 16349  df-topn 16350  df-topgen 16370  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-ntr 21104  df-cn 21311  df-cnp 21312  df-xms 22404  df-ms 22405  df-cncf 22960  df-limc 23921
This theorem is referenced by:  fourierdlem49  41009  fourierdlem76  41036  fourierdlem91  41051
  Copyright terms: Public domain W3C validator