Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem33 Structured version   Visualization version   GIF version

Theorem fourierdlem33 44371
Description: Limit of a continuous function on an open subinterval. Upper bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem33.1 (𝜑𝐴 ∈ ℝ)
fourierdlem33.2 (𝜑𝐵 ∈ ℝ)
fourierdlem33.3 (𝜑𝐴 < 𝐵)
fourierdlem33.4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem33.5 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
fourierdlem33.6 (𝜑𝐶 ∈ ℝ)
fourierdlem33.7 (𝜑𝐷 ∈ ℝ)
fourierdlem33.8 (𝜑𝐶 < 𝐷)
fourierdlem33.ss (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
fourierdlem33.y 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹𝐷))
fourierdlem33.10 𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
Assertion
Ref Expression
fourierdlem33 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))

Proof of Theorem fourierdlem33
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem33.5 . . . 4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
21adantr 481 . . 3 ((𝜑𝐷 = 𝐵) → 𝐿 ∈ (𝐹 lim 𝐵))
3 fourierdlem33.y . . . . 5 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹𝐷))
4 iftrue 4492 . . . . 5 (𝐷 = 𝐵 → if(𝐷 = 𝐵, 𝐿, (𝐹𝐷)) = 𝐿)
53, 4eqtr2id 2789 . . . 4 (𝐷 = 𝐵𝐿 = 𝑌)
65adantl 482 . . 3 ((𝜑𝐷 = 𝐵) → 𝐿 = 𝑌)
7 oveq2 7365 . . . . 5 (𝐷 = 𝐵 → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵))
87adantl 482 . . . 4 ((𝜑𝐷 = 𝐵) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵))
9 fourierdlem33.4 . . . . . . 7 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncff 24256 . . . . . . 7 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
119, 10syl 17 . . . . . 6 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
1211adantr 481 . . . . 5 ((𝜑𝐷 = 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
13 fourierdlem33.ss . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1413adantr 481 . . . . 5 ((𝜑𝐷 = 𝐵) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
15 ioosscn 13326 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
1615a1i 11 . . . . 5 ((𝜑𝐷 = 𝐵) → (𝐴(,)𝐵) ⊆ ℂ)
17 eqid 2736 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 fourierdlem33.10 . . . . 5 𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
19 fourierdlem33.7 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
20 fourierdlem33.8 . . . . . . . . 9 (𝜑𝐶 < 𝐷)
2119leidd 11721 . . . . . . . . 9 (𝜑𝐷𝐷)
22 fourierdlem33.6 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
2322rexrd 11205 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ*)
24 elioc2 13327 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ) → (𝐷 ∈ (𝐶(,]𝐷) ↔ (𝐷 ∈ ℝ ∧ 𝐶 < 𝐷𝐷𝐷)))
2523, 19, 24syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐷 ∈ (𝐶(,]𝐷) ↔ (𝐷 ∈ ℝ ∧ 𝐶 < 𝐷𝐷𝐷)))
2619, 20, 21, 25mpbir3and 1342 . . . . . . . 8 (𝜑𝐷 ∈ (𝐶(,]𝐷))
2726adantr 481 . . . . . . 7 ((𝜑𝐷 = 𝐵) → 𝐷 ∈ (𝐶(,]𝐷))
28 eqcom 2743 . . . . . . . . 9 (𝐷 = 𝐵𝐵 = 𝐷)
2928biimpi 215 . . . . . . . 8 (𝐷 = 𝐵𝐵 = 𝐷)
3029adantl 482 . . . . . . 7 ((𝜑𝐷 = 𝐵) → 𝐵 = 𝐷)
3117cnfldtop 24147 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
32 fourierdlem33.1 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
3332rexrd 11205 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
34 fourierdlem33.2 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
3534rexrd 11205 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
36 fourierdlem33.3 . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
37 ioounsn 13394 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
3833, 35, 36, 37syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
39 ovex 7390 . . . . . . . . . . . . 13 (𝐴(,]𝐵) ∈ V
4039a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,]𝐵) ∈ V)
4138, 40eqeltrd 2838 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
42 resttop 22511 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
4331, 41, 42sylancr 587 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
4418, 43eqeltrid 2842 . . . . . . . . 9 (𝜑𝐽 ∈ Top)
4544adantr 481 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → 𝐽 ∈ Top)
46 oveq2 7365 . . . . . . . . . . 11 (𝐷 = 𝐵 → (𝐶(,]𝐷) = (𝐶(,]𝐵))
4746adantl 482 . . . . . . . . . 10 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) = (𝐶(,]𝐵))
4823adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ*)
49 pnfxr 11209 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
5049a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → +∞ ∈ ℝ*)
51 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,]𝐵))
5234adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐵 ∈ ℝ)
53 elioc2 13327 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
5448, 52, 53syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
5551, 54mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵))
5655simp1d 1142 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ)
5755simp2d 1143 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
5856ltpnfd 13042 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 < +∞)
5948, 50, 56, 57, 58eliood 43726 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
6032adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ)
6122adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ)
6232, 34, 22, 19, 20, 13fourierdlem10 44348 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴𝐶𝐷𝐵))
6362simpld 495 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐶)
6463adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴𝐶)
6560, 61, 56, 64, 57lelttrd 11313 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 < 𝑥)
6655simp3d 1144 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
6733adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ*)
68 elioc2 13327 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
6967, 52, 68syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
7056, 65, 66, 69mpbir3and 1342 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
7159, 70elind 4154 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
72 elinel1 4155 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
73 elioore 13294 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐶(,)+∞) → 𝑥 ∈ ℝ)
7472, 73syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
7574adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ ℝ)
7623adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 ∈ ℝ*)
7749a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → +∞ ∈ ℝ*)
7872adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,)+∞))
79 ioogtlb 43723 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐶(,)+∞)) → 𝐶 < 𝑥)
8076, 77, 78, 79syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 < 𝑥)
81 elinel2 4156 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
8281adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐴(,]𝐵))
8333adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐴 ∈ ℝ*)
8434adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐵 ∈ ℝ)
8583, 84, 68syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
8682, 85mpbid 231 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵))
8786simp3d 1144 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥𝐵)
8876, 84, 53syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
8975, 80, 87, 88mpbir3and 1342 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,]𝐵))
9071, 89impbida 799 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐶(,]𝐵) ↔ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))))
9190eqrdv 2734 . . . . . . . . . . . 12 (𝜑 → (𝐶(,]𝐵) = ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
92 retop 24125 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
9392a1i 11 . . . . . . . . . . . . 13 (𝜑 → (topGen‘ran (,)) ∈ Top)
94 iooretop 24129 . . . . . . . . . . . . . 14 (𝐶(,)+∞) ∈ (topGen‘ran (,))
9594a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐶(,)+∞) ∈ (topGen‘ran (,)))
96 elrestr 17310 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,]𝐵) ∈ V ∧ (𝐶(,)+∞) ∈ (topGen‘ran (,))) → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9793, 40, 95, 96syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9891, 97eqeltrd 2838 . . . . . . . . . . 11 (𝜑 → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9998adantr 481 . . . . . . . . . 10 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
10047, 99eqeltrd 2838 . . . . . . . . 9 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
10118a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
10238oveq2d 7373 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
10331a1i 11 . . . . . . . . . . . . 13 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
104 iocssre 13344 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
10533, 34, 104syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
106 reex 11142 . . . . . . . . . . . . . 14 ℝ ∈ V
107106a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
108 restabs 22516 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,]𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
109103, 105, 107, 108syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
11017tgioo2 24166 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
111110eqcomi 2745 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
112111oveq1i 7367 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴(,]𝐵))
113109, 112eqtr3di 2791 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
114101, 102, 1133eqtrrd 2781 . . . . . . . . . 10 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)) = 𝐽)
115114adantr 481 . . . . . . . . 9 ((𝜑𝐷 = 𝐵) → ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)) = 𝐽)
116100, 115eleqtrd 2840 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) ∈ 𝐽)
117 isopn3i 22433 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐶(,]𝐷) ∈ 𝐽) → ((int‘𝐽)‘(𝐶(,]𝐷)) = (𝐶(,]𝐷))
11845, 116, 117syl2anc 584 . . . . . . 7 ((𝜑𝐷 = 𝐵) → ((int‘𝐽)‘(𝐶(,]𝐷)) = (𝐶(,]𝐷))
11927, 30, 1183eltr4d 2853 . . . . . 6 ((𝜑𝐷 = 𝐵) → 𝐵 ∈ ((int‘𝐽)‘(𝐶(,]𝐷)))
120 sneq 4596 . . . . . . . . . . 11 (𝐷 = 𝐵 → {𝐷} = {𝐵})
121120eqcomd 2742 . . . . . . . . . 10 (𝐷 = 𝐵 → {𝐵} = {𝐷})
122121uneq2d 4123 . . . . . . . . 9 (𝐷 = 𝐵 → ((𝐶(,)𝐷) ∪ {𝐵}) = ((𝐶(,)𝐷) ∪ {𝐷}))
123122adantl 482 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → ((𝐶(,)𝐷) ∪ {𝐵}) = ((𝐶(,)𝐷) ∪ {𝐷}))
12419rexrd 11205 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ*)
125 ioounsn 13394 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷) → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
12623, 124, 20, 125syl3anc 1371 . . . . . . . . 9 (𝜑 → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
127126adantr 481 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
128123, 127eqtr2d 2777 . . . . . . 7 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) = ((𝐶(,)𝐷) ∪ {𝐵}))
129128fveq2d 6846 . . . . . 6 ((𝜑𝐷 = 𝐵) → ((int‘𝐽)‘(𝐶(,]𝐷)) = ((int‘𝐽)‘((𝐶(,)𝐷) ∪ {𝐵})))
130119, 129eleqtrd 2840 . . . . 5 ((𝜑𝐷 = 𝐵) → 𝐵 ∈ ((int‘𝐽)‘((𝐶(,)𝐷) ∪ {𝐵})))
13112, 14, 16, 17, 18, 130limcres 25250 . . . 4 ((𝜑𝐷 = 𝐵) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵) = (𝐹 lim 𝐵))
1328, 131eqtr2d 2777 . . 3 ((𝜑𝐷 = 𝐵) → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
1332, 6, 1323eltr3d 2852 . 2 ((𝜑𝐷 = 𝐵) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
134 limcresi 25249 . . 3 (𝐹 lim 𝐷) ⊆ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷)
135 iffalse 4495 . . . . . 6 𝐷 = 𝐵 → if(𝐷 = 𝐵, 𝐿, (𝐹𝐷)) = (𝐹𝐷))
1363, 135eqtrid 2788 . . . . 5 𝐷 = 𝐵𝑌 = (𝐹𝐷))
137136adantl 482 . . . 4 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 = (𝐹𝐷))
138 ssid 3966 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
139138a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
140 eqid 2736 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
141 unicntop 24149 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
142141restid 17315 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
14331, 142ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
144143eqcomi 2745 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
14517, 140, 144cncfcn 24273 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
14615, 139, 145sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
1479, 146eleqtrd 2840 . . . . . . . . . 10 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
14817cnfldtopon 24146 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
14915a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
150 resttopon 22512 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
151148, 149, 150sylancr 587 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
152148a1i 11 . . . . . . . . . . 11 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
153 cncnp 22631 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
154151, 152, 153syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
155147, 154mpbid 231 . . . . . . . . 9 (𝜑 → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
156155simprd 496 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
157156adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
15833adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐴 ∈ ℝ*)
15935adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ∈ ℝ*)
16019adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ∈ ℝ)
16132, 22, 19, 63, 20lelttrd 11313 . . . . . . . . 9 (𝜑𝐴 < 𝐷)
162161adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐴 < 𝐷)
16334adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ∈ ℝ)
16462simprd 496 . . . . . . . . . 10 (𝜑𝐷𝐵)
165164adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷𝐵)
166 neqne 2951 . . . . . . . . . . 11 𝐷 = 𝐵𝐷𝐵)
167166necomd 2999 . . . . . . . . . 10 𝐷 = 𝐵𝐵𝐷)
168167adantl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵𝐷)
169160, 163, 165, 168leneltd 11309 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 < 𝐵)
170158, 159, 160, 162, 169eliood 43726 . . . . . . 7 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ∈ (𝐴(,)𝐵))
171 fveq2 6842 . . . . . . . . 9 (𝑥 = 𝐷 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
172171eleq2d 2823 . . . . . . . 8 (𝑥 = 𝐷 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ↔ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷)))
173172rspccva 3580 . . . . . . 7 ((∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
174157, 170, 173syl2anc 584 . . . . . 6 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
17517, 140cnplimc 25251 . . . . . . 7 (((𝐴(,)𝐵) ⊆ ℂ ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷))))
17615, 170, 175sylancr 587 . . . . . 6 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷))))
177174, 176mpbid 231 . . . . 5 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷)))
178177simprd 496 . . . 4 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹𝐷) ∈ (𝐹 lim 𝐷))
179137, 178eqeltrd 2838 . . 3 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 ∈ (𝐹 lim 𝐷))
180134, 179sselid 3942 . 2 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
181133, 180pm2.61dan 811 1 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  Vcvv 3445  cun 3908  cin 3909  wss 3910  ifcif 4486  {csn 4586   class class class wbr 5105  ran crn 5634  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  (,)cioo 13264  (,]cioc 13265  t crest 17302  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  Topctop 22242  TopOnctopon 22259  intcnt 22368   Cn ccn 22575   CnP ccnp 22576  cnccncf 24239   lim climc 25226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-icc 13271  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-ntr 22371  df-cn 22578  df-cnp 22579  df-xms 23673  df-ms 23674  df-cncf 24241  df-limc 25230
This theorem is referenced by:  fourierdlem49  44386  fourierdlem76  44413  fourierdlem91  44428
  Copyright terms: Public domain W3C validator