Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem33 Structured version   Visualization version   GIF version

Theorem fourierdlem33 46096
Description: Limit of a continuous function on an open subinterval. Upper bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem33.1 (𝜑𝐴 ∈ ℝ)
fourierdlem33.2 (𝜑𝐵 ∈ ℝ)
fourierdlem33.3 (𝜑𝐴 < 𝐵)
fourierdlem33.4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem33.5 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
fourierdlem33.6 (𝜑𝐶 ∈ ℝ)
fourierdlem33.7 (𝜑𝐷 ∈ ℝ)
fourierdlem33.8 (𝜑𝐶 < 𝐷)
fourierdlem33.ss (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
fourierdlem33.y 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹𝐷))
fourierdlem33.10 𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
Assertion
Ref Expression
fourierdlem33 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))

Proof of Theorem fourierdlem33
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem33.5 . . . 4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
21adantr 480 . . 3 ((𝜑𝐷 = 𝐵) → 𝐿 ∈ (𝐹 lim 𝐵))
3 fourierdlem33.y . . . . 5 𝑌 = if(𝐷 = 𝐵, 𝐿, (𝐹𝐷))
4 iftrue 4537 . . . . 5 (𝐷 = 𝐵 → if(𝐷 = 𝐵, 𝐿, (𝐹𝐷)) = 𝐿)
53, 4eqtr2id 2788 . . . 4 (𝐷 = 𝐵𝐿 = 𝑌)
65adantl 481 . . 3 ((𝜑𝐷 = 𝐵) → 𝐿 = 𝑌)
7 oveq2 7439 . . . . 5 (𝐷 = 𝐵 → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵))
87adantl 481 . . . 4 ((𝜑𝐷 = 𝐵) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵))
9 fourierdlem33.4 . . . . . . 7 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncff 24933 . . . . . . 7 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
119, 10syl 17 . . . . . 6 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
1211adantr 480 . . . . 5 ((𝜑𝐷 = 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
13 fourierdlem33.ss . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1413adantr 480 . . . . 5 ((𝜑𝐷 = 𝐵) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
15 ioosscn 13446 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
1615a1i 11 . . . . 5 ((𝜑𝐷 = 𝐵) → (𝐴(,)𝐵) ⊆ ℂ)
17 eqid 2735 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 fourierdlem33.10 . . . . 5 𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
19 fourierdlem33.7 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
20 fourierdlem33.8 . . . . . . . . 9 (𝜑𝐶 < 𝐷)
2119leidd 11827 . . . . . . . . 9 (𝜑𝐷𝐷)
22 fourierdlem33.6 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
2322rexrd 11309 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ*)
24 elioc2 13447 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ) → (𝐷 ∈ (𝐶(,]𝐷) ↔ (𝐷 ∈ ℝ ∧ 𝐶 < 𝐷𝐷𝐷)))
2523, 19, 24syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐷 ∈ (𝐶(,]𝐷) ↔ (𝐷 ∈ ℝ ∧ 𝐶 < 𝐷𝐷𝐷)))
2619, 20, 21, 25mpbir3and 1341 . . . . . . . 8 (𝜑𝐷 ∈ (𝐶(,]𝐷))
2726adantr 480 . . . . . . 7 ((𝜑𝐷 = 𝐵) → 𝐷 ∈ (𝐶(,]𝐷))
28 eqcom 2742 . . . . . . . . 9 (𝐷 = 𝐵𝐵 = 𝐷)
2928biimpi 216 . . . . . . . 8 (𝐷 = 𝐵𝐵 = 𝐷)
3029adantl 481 . . . . . . 7 ((𝜑𝐷 = 𝐵) → 𝐵 = 𝐷)
3117cnfldtop 24820 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
32 fourierdlem33.1 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
3332rexrd 11309 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
34 fourierdlem33.2 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
3534rexrd 11309 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
36 fourierdlem33.3 . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
37 ioounsn 13514 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
3833, 35, 36, 37syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
39 ovex 7464 . . . . . . . . . . . . 13 (𝐴(,]𝐵) ∈ V
4039a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,]𝐵) ∈ V)
4138, 40eqeltrd 2839 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
42 resttop 23184 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
4331, 41, 42sylancr 587 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
4418, 43eqeltrid 2843 . . . . . . . . 9 (𝜑𝐽 ∈ Top)
4544adantr 480 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → 𝐽 ∈ Top)
46 oveq2 7439 . . . . . . . . . . 11 (𝐷 = 𝐵 → (𝐶(,]𝐷) = (𝐶(,]𝐵))
4746adantl 481 . . . . . . . . . 10 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) = (𝐶(,]𝐵))
4823adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ*)
49 pnfxr 11313 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
5049a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → +∞ ∈ ℝ*)
51 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,]𝐵))
5234adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐵 ∈ ℝ)
53 elioc2 13447 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
5448, 52, 53syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
5551, 54mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵))
5655simp1d 1141 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ℝ)
5755simp2d 1142 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 < 𝑥)
5856ltpnfd 13161 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 < +∞)
5948, 50, 56, 57, 58eliood 45451 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
6032adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ)
6122adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐶 ∈ ℝ)
6232, 34, 22, 19, 20, 13fourierdlem10 46073 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴𝐶𝐷𝐵))
6362simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐶)
6463adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴𝐶)
6560, 61, 56, 64, 57lelttrd 11417 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 < 𝑥)
6655simp3d 1143 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥𝐵)
6733adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝐴 ∈ ℝ*)
68 elioc2 13447 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
6967, 52, 68syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
7056, 65, 66, 69mpbir3and 1341 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
7159, 70elind 4210 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐶(,]𝐵)) → 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
72 elinel1 4211 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐶(,)+∞))
73 elioore 13414 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐶(,)+∞) → 𝑥 ∈ ℝ)
7472, 73syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
7574adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ ℝ)
7623adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 ∈ ℝ*)
7749a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → +∞ ∈ ℝ*)
7872adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,)+∞))
79 ioogtlb 45448 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐶(,)+∞)) → 𝐶 < 𝑥)
8076, 77, 78, 79syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐶 < 𝑥)
81 elinel2 4212 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) → 𝑥 ∈ (𝐴(,]𝐵))
8281adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐴(,]𝐵))
8333adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐴 ∈ ℝ*)
8434adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝐵 ∈ ℝ)
8583, 84, 68syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
8682, 85mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵))
8786simp3d 1143 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥𝐵)
8876, 84, 53syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → (𝑥 ∈ (𝐶(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶 < 𝑥𝑥𝐵)))
8975, 80, 87, 88mpbir3and 1341 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))) → 𝑥 ∈ (𝐶(,]𝐵))
9071, 89impbida 801 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐶(,]𝐵) ↔ 𝑥 ∈ ((𝐶(,)+∞) ∩ (𝐴(,]𝐵))))
9190eqrdv 2733 . . . . . . . . . . . 12 (𝜑 → (𝐶(,]𝐵) = ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)))
92 retop 24798 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
9392a1i 11 . . . . . . . . . . . . 13 (𝜑 → (topGen‘ran (,)) ∈ Top)
94 iooretop 24802 . . . . . . . . . . . . . 14 (𝐶(,)+∞) ∈ (topGen‘ran (,))
9594a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐶(,)+∞) ∈ (topGen‘ran (,)))
96 elrestr 17475 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,]𝐵) ∈ V ∧ (𝐶(,)+∞) ∈ (topGen‘ran (,))) → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9793, 40, 95, 96syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → ((𝐶(,)+∞) ∩ (𝐴(,]𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9891, 97eqeltrd 2839 . . . . . . . . . . 11 (𝜑 → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
9998adantr 480 . . . . . . . . . 10 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
10047, 99eqeltrd 2839 . . . . . . . . 9 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
10118a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
10238oveq2d 7447 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
10331a1i 11 . . . . . . . . . . . . 13 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
104 iocssre 13464 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
10533, 34, 104syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
106 reex 11244 . . . . . . . . . . . . . 14 ℝ ∈ V
107106a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
108 restabs 23189 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴(,]𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
109103, 105, 107, 108syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)))
11017tgioo2 24839 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
111110eqcomi 2744 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
112111oveq1i 7441 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴(,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴(,]𝐵))
113109, 112eqtr3di 2790 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)))
114101, 102, 1133eqtrrd 2780 . . . . . . . . . 10 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)) = 𝐽)
115114adantr 480 . . . . . . . . 9 ((𝜑𝐷 = 𝐵) → ((topGen‘ran (,)) ↾t (𝐴(,]𝐵)) = 𝐽)
116100, 115eleqtrd 2841 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) ∈ 𝐽)
117 isopn3i 23106 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐶(,]𝐷) ∈ 𝐽) → ((int‘𝐽)‘(𝐶(,]𝐷)) = (𝐶(,]𝐷))
11845, 116, 117syl2anc 584 . . . . . . 7 ((𝜑𝐷 = 𝐵) → ((int‘𝐽)‘(𝐶(,]𝐷)) = (𝐶(,]𝐷))
11927, 30, 1183eltr4d 2854 . . . . . 6 ((𝜑𝐷 = 𝐵) → 𝐵 ∈ ((int‘𝐽)‘(𝐶(,]𝐷)))
120 sneq 4641 . . . . . . . . . . 11 (𝐷 = 𝐵 → {𝐷} = {𝐵})
121120eqcomd 2741 . . . . . . . . . 10 (𝐷 = 𝐵 → {𝐵} = {𝐷})
122121uneq2d 4178 . . . . . . . . 9 (𝐷 = 𝐵 → ((𝐶(,)𝐷) ∪ {𝐵}) = ((𝐶(,)𝐷) ∪ {𝐷}))
123122adantl 481 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → ((𝐶(,)𝐷) ∪ {𝐵}) = ((𝐶(,)𝐷) ∪ {𝐷}))
12419rexrd 11309 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ*)
125 ioounsn 13514 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷) → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
12623, 124, 20, 125syl3anc 1370 . . . . . . . . 9 (𝜑 → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
127126adantr 480 . . . . . . . 8 ((𝜑𝐷 = 𝐵) → ((𝐶(,)𝐷) ∪ {𝐷}) = (𝐶(,]𝐷))
128123, 127eqtr2d 2776 . . . . . . 7 ((𝜑𝐷 = 𝐵) → (𝐶(,]𝐷) = ((𝐶(,)𝐷) ∪ {𝐵}))
129128fveq2d 6911 . . . . . 6 ((𝜑𝐷 = 𝐵) → ((int‘𝐽)‘(𝐶(,]𝐷)) = ((int‘𝐽)‘((𝐶(,)𝐷) ∪ {𝐵})))
130119, 129eleqtrd 2841 . . . . 5 ((𝜑𝐷 = 𝐵) → 𝐵 ∈ ((int‘𝐽)‘((𝐶(,)𝐷) ∪ {𝐵})))
13112, 14, 16, 17, 18, 130limcres 25936 . . . 4 ((𝜑𝐷 = 𝐵) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐵) = (𝐹 lim 𝐵))
1328, 131eqtr2d 2776 . . 3 ((𝜑𝐷 = 𝐵) → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
1332, 6, 1323eltr3d 2853 . 2 ((𝜑𝐷 = 𝐵) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
134 limcresi 25935 . . 3 (𝐹 lim 𝐷) ⊆ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷)
135 iffalse 4540 . . . . . 6 𝐷 = 𝐵 → if(𝐷 = 𝐵, 𝐿, (𝐹𝐷)) = (𝐹𝐷))
1363, 135eqtrid 2787 . . . . 5 𝐷 = 𝐵𝑌 = (𝐹𝐷))
137136adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 = (𝐹𝐷))
138 ssid 4018 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
139138a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
140 eqid 2735 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
141 unicntop 24822 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
142141restid 17480 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
14331, 142ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
144143eqcomi 2744 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
14517, 140, 144cncfcn 24950 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
14615, 139, 145sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
1479, 146eleqtrd 2841 . . . . . . . . . 10 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
14817cnfldtopon 24819 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
14915a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
150 resttopon 23185 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
151148, 149, 150sylancr 587 . . . . . . . . . . 11 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
152148a1i 11 . . . . . . . . . . 11 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
153 cncnp 23304 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
154151, 152, 153syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
155147, 154mpbid 232 . . . . . . . . 9 (𝜑 → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
156155simprd 495 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
157156adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
15833adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐴 ∈ ℝ*)
15935adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ∈ ℝ*)
16019adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ∈ ℝ)
16132, 22, 19, 63, 20lelttrd 11417 . . . . . . . . 9 (𝜑𝐴 < 𝐷)
162161adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐴 < 𝐷)
16334adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵 ∈ ℝ)
16462simprd 495 . . . . . . . . . 10 (𝜑𝐷𝐵)
165164adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷𝐵)
166 neqne 2946 . . . . . . . . . . 11 𝐷 = 𝐵𝐷𝐵)
167166necomd 2994 . . . . . . . . . 10 𝐷 = 𝐵𝐵𝐷)
168167adantl 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐵𝐷)
169160, 163, 165, 168leneltd 11413 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 < 𝐵)
170158, 159, 160, 162, 169eliood 45451 . . . . . . 7 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐷 ∈ (𝐴(,)𝐵))
171 fveq2 6907 . . . . . . . . 9 (𝑥 = 𝐷 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
172171eleq2d 2825 . . . . . . . 8 (𝑥 = 𝐷 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ↔ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷)))
173172rspccva 3621 . . . . . . 7 ((∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
174157, 170, 173syl2anc 584 . . . . . 6 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷))
17517, 140cnplimc 25937 . . . . . . 7 (((𝐴(,)𝐵) ⊆ ℂ ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷))))
17615, 170, 175sylancr 587 . . . . . 6 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐷) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷))))
177174, 176mpbid 232 . . . . 5 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐷) ∈ (𝐹 lim 𝐷)))
178177simprd 495 . . . 4 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → (𝐹𝐷) ∈ (𝐹 lim 𝐷))
179137, 178eqeltrd 2839 . . 3 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 ∈ (𝐹 lim 𝐷))
180134, 179sselid 3993 . 2 ((𝜑 ∧ ¬ 𝐷 = 𝐵) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
181133, 180pm2.61dan 813 1 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  cun 3961  cin 3962  wss 3963  ifcif 4531  {csn 4631   class class class wbr 5148  ran crn 5690  cres 5691  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  (,)cioo 13384  (,]cioc 13385  t crest 17467  TopOpenctopn 17468  topGenctg 17484  fldccnfld 21382  Topctop 22915  TopOnctopon 22932  intcnt 23041   Cn ccn 23248   CnP ccnp 23249  cnccncf 24916   lim climc 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-icc 13391  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17469  df-topn 17470  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-ntr 23044  df-cn 23251  df-cnp 23252  df-xms 24346  df-ms 24347  df-cncf 24918  df-limc 25916
This theorem is referenced by:  fourierdlem49  46111  fourierdlem76  46138  fourierdlem91  46153
  Copyright terms: Public domain W3C validator