MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxpsval Structured version   Visualization version   GIF version

Theorem tmsxpsval 24454
Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsxps.p 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
tmsxps.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
tmsxps.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
tmsxpsval.a (𝜑𝐴𝑋)
tmsxpsval.b (𝜑𝐵𝑌)
tmsxpsval.c (𝜑𝐶𝑋)
tmsxpsval.d (𝜑𝐷𝑌)
Assertion
Ref Expression
tmsxpsval (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))

Proof of Theorem tmsxpsval
StepHypRef Expression
1 eqid 2733 . . 3 ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) = ((toMetSp‘𝑀) ×s (toMetSp‘𝑁))
2 eqid 2733 . . 3 (Base‘(toMetSp‘𝑀)) = (Base‘(toMetSp‘𝑀))
3 eqid 2733 . . 3 (Base‘(toMetSp‘𝑁)) = (Base‘(toMetSp‘𝑁))
4 tmsxps.1 . . . 4 (𝜑𝑀 ∈ (∞Met‘𝑋))
5 eqid 2733 . . . . 5 (toMetSp‘𝑀) = (toMetSp‘𝑀)
65tmsxms 24402 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → (toMetSp‘𝑀) ∈ ∞MetSp)
74, 6syl 17 . . 3 (𝜑 → (toMetSp‘𝑀) ∈ ∞MetSp)
8 tmsxps.2 . . . 4 (𝜑𝑁 ∈ (∞Met‘𝑌))
9 eqid 2733 . . . . 5 (toMetSp‘𝑁) = (toMetSp‘𝑁)
109tmsxms 24402 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → (toMetSp‘𝑁) ∈ ∞MetSp)
118, 10syl 17 . . 3 (𝜑 → (toMetSp‘𝑁) ∈ ∞MetSp)
12 tmsxps.p . . 3 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
13 eqid 2733 . . 3 ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) = ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))
14 eqid 2733 . . 3 ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) = ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))
155tmsds 24400 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → 𝑀 = (dist‘(toMetSp‘𝑀)))
164, 15syl 17 . . . . 5 (𝜑𝑀 = (dist‘(toMetSp‘𝑀)))
175tmsbas 24399 . . . . . . 7 (𝑀 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘(toMetSp‘𝑀)))
184, 17syl 17 . . . . . 6 (𝜑𝑋 = (Base‘(toMetSp‘𝑀)))
1918fveq2d 6832 . . . . 5 (𝜑 → (∞Met‘𝑋) = (∞Met‘(Base‘(toMetSp‘𝑀))))
204, 16, 193eltr3d 2847 . . . 4 (𝜑 → (dist‘(toMetSp‘𝑀)) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))))
21 ssid 3953 . . . 4 (Base‘(toMetSp‘𝑀)) ⊆ (Base‘(toMetSp‘𝑀))
22 xmetres2 24277 . . . 4 (((dist‘(toMetSp‘𝑀)) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))) ∧ (Base‘(toMetSp‘𝑀)) ⊆ (Base‘(toMetSp‘𝑀))) → ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))))
2320, 21, 22sylancl 586 . . 3 (𝜑 → ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))))
249tmsds 24400 . . . . . 6 (𝑁 ∈ (∞Met‘𝑌) → 𝑁 = (dist‘(toMetSp‘𝑁)))
258, 24syl 17 . . . . 5 (𝜑𝑁 = (dist‘(toMetSp‘𝑁)))
269tmsbas 24399 . . . . . . 7 (𝑁 ∈ (∞Met‘𝑌) → 𝑌 = (Base‘(toMetSp‘𝑁)))
278, 26syl 17 . . . . . 6 (𝜑𝑌 = (Base‘(toMetSp‘𝑁)))
2827fveq2d 6832 . . . . 5 (𝜑 → (∞Met‘𝑌) = (∞Met‘(Base‘(toMetSp‘𝑁))))
298, 25, 283eltr3d 2847 . . . 4 (𝜑 → (dist‘(toMetSp‘𝑁)) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))))
30 ssid 3953 . . . 4 (Base‘(toMetSp‘𝑁)) ⊆ (Base‘(toMetSp‘𝑁))
31 xmetres2 24277 . . . 4 (((dist‘(toMetSp‘𝑁)) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))) ∧ (Base‘(toMetSp‘𝑁)) ⊆ (Base‘(toMetSp‘𝑁))) → ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))))
3229, 30, 31sylancl 586 . . 3 (𝜑 → ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))))
33 tmsxpsval.a . . . 4 (𝜑𝐴𝑋)
3433, 18eleqtrd 2835 . . 3 (𝜑𝐴 ∈ (Base‘(toMetSp‘𝑀)))
35 tmsxpsval.b . . . 4 (𝜑𝐵𝑌)
3635, 27eleqtrd 2835 . . 3 (𝜑𝐵 ∈ (Base‘(toMetSp‘𝑁)))
37 tmsxpsval.c . . . 4 (𝜑𝐶𝑋)
3837, 18eleqtrd 2835 . . 3 (𝜑𝐶 ∈ (Base‘(toMetSp‘𝑀)))
39 tmsxpsval.d . . . 4 (𝜑𝐷𝑌)
4039, 27eleqtrd 2835 . . 3 (𝜑𝐷 ∈ (Base‘(toMetSp‘𝑁)))
411, 2, 3, 7, 11, 12, 13, 14, 23, 32, 34, 36, 38, 40xpsdsval 24297 . 2 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)}, ℝ*, < ))
4234, 38ovresd 7519 . . . . 5 (𝜑 → (𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶) = (𝐴(dist‘(toMetSp‘𝑀))𝐶))
4316oveqd 7369 . . . . 5 (𝜑 → (𝐴𝑀𝐶) = (𝐴(dist‘(toMetSp‘𝑀))𝐶))
4442, 43eqtr4d 2771 . . . 4 (𝜑 → (𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶) = (𝐴𝑀𝐶))
4536, 40ovresd 7519 . . . . 5 (𝜑 → (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷) = (𝐵(dist‘(toMetSp‘𝑁))𝐷))
4625oveqd 7369 . . . . 5 (𝜑 → (𝐵𝑁𝐷) = (𝐵(dist‘(toMetSp‘𝑁))𝐷))
4745, 46eqtr4d 2771 . . . 4 (𝜑 → (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷) = (𝐵𝑁𝐷))
4844, 47preq12d 4693 . . 3 (𝜑 → {(𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)} = {(𝐴𝑀𝐶), (𝐵𝑁𝐷)})
4948supeq1d 9337 . 2 (𝜑 → sup({(𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)}, ℝ*, < ) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
5041, 49eqtrd 2768 1 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wss 3898  {cpr 4577  cop 4581   × cxp 5617  cres 5621  cfv 6486  (class class class)co 7352  supcsup 9331  *cxr 11152   < clt 11153  Basecbs 17122  distcds 17172   ×s cxps 17412  ∞Metcxmet 21278  ∞MetSpcxms 24233  toMetSpctms 24235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-icc 13254  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-prds 17353  df-xrs 17408  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-bl 21288  df-mopn 21289  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-xms 24236  df-tms 24238
This theorem is referenced by:  tmsxpsval2  24455
  Copyright terms: Public domain W3C validator