Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxpsval Structured version   Visualization version   GIF version

Theorem tmsxpsval 23230
 Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsxps.p 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
tmsxps.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
tmsxps.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
tmsxpsval.a (𝜑𝐴𝑋)
tmsxpsval.b (𝜑𝐵𝑌)
tmsxpsval.c (𝜑𝐶𝑋)
tmsxpsval.d (𝜑𝐷𝑌)
Assertion
Ref Expression
tmsxpsval (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))

Proof of Theorem tmsxpsval
StepHypRef Expression
1 eqid 2759 . . 3 ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) = ((toMetSp‘𝑀) ×s (toMetSp‘𝑁))
2 eqid 2759 . . 3 (Base‘(toMetSp‘𝑀)) = (Base‘(toMetSp‘𝑀))
3 eqid 2759 . . 3 (Base‘(toMetSp‘𝑁)) = (Base‘(toMetSp‘𝑁))
4 tmsxps.1 . . . 4 (𝜑𝑀 ∈ (∞Met‘𝑋))
5 eqid 2759 . . . . 5 (toMetSp‘𝑀) = (toMetSp‘𝑀)
65tmsxms 23178 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → (toMetSp‘𝑀) ∈ ∞MetSp)
74, 6syl 17 . . 3 (𝜑 → (toMetSp‘𝑀) ∈ ∞MetSp)
8 tmsxps.2 . . . 4 (𝜑𝑁 ∈ (∞Met‘𝑌))
9 eqid 2759 . . . . 5 (toMetSp‘𝑁) = (toMetSp‘𝑁)
109tmsxms 23178 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → (toMetSp‘𝑁) ∈ ∞MetSp)
118, 10syl 17 . . 3 (𝜑 → (toMetSp‘𝑁) ∈ ∞MetSp)
12 tmsxps.p . . 3 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
13 eqid 2759 . . 3 ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) = ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))
14 eqid 2759 . . 3 ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) = ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))
155tmsds 23176 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → 𝑀 = (dist‘(toMetSp‘𝑀)))
164, 15syl 17 . . . . 5 (𝜑𝑀 = (dist‘(toMetSp‘𝑀)))
175tmsbas 23175 . . . . . . 7 (𝑀 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘(toMetSp‘𝑀)))
184, 17syl 17 . . . . . 6 (𝜑𝑋 = (Base‘(toMetSp‘𝑀)))
1918fveq2d 6660 . . . . 5 (𝜑 → (∞Met‘𝑋) = (∞Met‘(Base‘(toMetSp‘𝑀))))
204, 16, 193eltr3d 2867 . . . 4 (𝜑 → (dist‘(toMetSp‘𝑀)) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))))
21 ssid 3915 . . . 4 (Base‘(toMetSp‘𝑀)) ⊆ (Base‘(toMetSp‘𝑀))
22 xmetres2 23053 . . . 4 (((dist‘(toMetSp‘𝑀)) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))) ∧ (Base‘(toMetSp‘𝑀)) ⊆ (Base‘(toMetSp‘𝑀))) → ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))))
2320, 21, 22sylancl 590 . . 3 (𝜑 → ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))))
249tmsds 23176 . . . . . 6 (𝑁 ∈ (∞Met‘𝑌) → 𝑁 = (dist‘(toMetSp‘𝑁)))
258, 24syl 17 . . . . 5 (𝜑𝑁 = (dist‘(toMetSp‘𝑁)))
269tmsbas 23175 . . . . . . 7 (𝑁 ∈ (∞Met‘𝑌) → 𝑌 = (Base‘(toMetSp‘𝑁)))
278, 26syl 17 . . . . . 6 (𝜑𝑌 = (Base‘(toMetSp‘𝑁)))
2827fveq2d 6660 . . . . 5 (𝜑 → (∞Met‘𝑌) = (∞Met‘(Base‘(toMetSp‘𝑁))))
298, 25, 283eltr3d 2867 . . . 4 (𝜑 → (dist‘(toMetSp‘𝑁)) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))))
30 ssid 3915 . . . 4 (Base‘(toMetSp‘𝑁)) ⊆ (Base‘(toMetSp‘𝑁))
31 xmetres2 23053 . . . 4 (((dist‘(toMetSp‘𝑁)) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))) ∧ (Base‘(toMetSp‘𝑁)) ⊆ (Base‘(toMetSp‘𝑁))) → ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))))
3229, 30, 31sylancl 590 . . 3 (𝜑 → ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))))
33 tmsxpsval.a . . . 4 (𝜑𝐴𝑋)
3433, 18eleqtrd 2855 . . 3 (𝜑𝐴 ∈ (Base‘(toMetSp‘𝑀)))
35 tmsxpsval.b . . . 4 (𝜑𝐵𝑌)
3635, 27eleqtrd 2855 . . 3 (𝜑𝐵 ∈ (Base‘(toMetSp‘𝑁)))
37 tmsxpsval.c . . . 4 (𝜑𝐶𝑋)
3837, 18eleqtrd 2855 . . 3 (𝜑𝐶 ∈ (Base‘(toMetSp‘𝑀)))
39 tmsxpsval.d . . . 4 (𝜑𝐷𝑌)
4039, 27eleqtrd 2855 . . 3 (𝜑𝐷 ∈ (Base‘(toMetSp‘𝑁)))
411, 2, 3, 7, 11, 12, 13, 14, 23, 32, 34, 36, 38, 40xpsdsval 23073 . 2 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)}, ℝ*, < ))
4234, 38ovresd 7309 . . . . 5 (𝜑 → (𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶) = (𝐴(dist‘(toMetSp‘𝑀))𝐶))
4316oveqd 7165 . . . . 5 (𝜑 → (𝐴𝑀𝐶) = (𝐴(dist‘(toMetSp‘𝑀))𝐶))
4442, 43eqtr4d 2797 . . . 4 (𝜑 → (𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶) = (𝐴𝑀𝐶))
4536, 40ovresd 7309 . . . . 5 (𝜑 → (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷) = (𝐵(dist‘(toMetSp‘𝑁))𝐷))
4625oveqd 7165 . . . . 5 (𝜑 → (𝐵𝑁𝐷) = (𝐵(dist‘(toMetSp‘𝑁))𝐷))
4745, 46eqtr4d 2797 . . . 4 (𝜑 → (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷) = (𝐵𝑁𝐷))
4844, 47preq12d 4632 . . 3 (𝜑 → {(𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)} = {(𝐴𝑀𝐶), (𝐵𝑁𝐷)})
4948supeq1d 8933 . 2 (𝜑 → sup({(𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)}, ℝ*, < ) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
5041, 49eqtrd 2794 1 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1539   ∈ wcel 2112   ⊆ wss 3859  {cpr 4522  ⟨cop 4526   × cxp 5520   ↾ cres 5524  ‘cfv 6333  (class class class)co 7148  supcsup 8927  ℝ*cxr 10702   < clt 10703  Basecbs 16531  distcds 16622   ×s cxps 16827  ∞Metcxmet 20141  ∞MetSpcxms 23009  toMetSpctms 23011 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7403  df-om 7578  df-1st 7691  df-2nd 7692  df-supp 7834  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-2o 8111  df-oadd 8114  df-er 8297  df-map 8416  df-ixp 8478  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-fsupp 8857  df-sup 8929  df-inf 8930  df-oi 8997  df-card 9391  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-4 11729  df-5 11730  df-6 11731  df-7 11732  df-8 11733  df-9 11734  df-n0 11925  df-z 12011  df-dec 12128  df-uz 12273  df-q 12379  df-rp 12421  df-xneg 12538  df-xadd 12539  df-xmul 12540  df-icc 12776  df-fz 12930  df-fzo 13073  df-seq 13409  df-hash 13731  df-struct 16533  df-ndx 16534  df-slot 16535  df-base 16537  df-sets 16538  df-ress 16539  df-plusg 16626  df-mulr 16627  df-sca 16629  df-vsca 16630  df-ip 16631  df-tset 16632  df-ple 16633  df-ds 16635  df-hom 16637  df-cco 16638  df-rest 16744  df-topn 16745  df-0g 16763  df-gsum 16764  df-topgen 16765  df-prds 16769  df-xrs 16823  df-imas 16829  df-xps 16831  df-mre 16905  df-mrc 16906  df-acs 16908  df-mgm 17908  df-sgrp 17957  df-mnd 17968  df-submnd 18013  df-mulg 18282  df-cntz 18504  df-cmn 18965  df-psmet 20148  df-xmet 20149  df-bl 20151  df-mopn 20152  df-top 21584  df-topon 21601  df-topsp 21623  df-bases 21636  df-xms 23012  df-tms 23014 This theorem is referenced by:  tmsxpsval2  23231
 Copyright terms: Public domain W3C validator