MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxpsval Structured version   Visualization version   GIF version

Theorem tmsxpsval 24426
Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsxps.p 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
tmsxps.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
tmsxps.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
tmsxpsval.a (𝜑𝐴𝑋)
tmsxpsval.b (𝜑𝐵𝑌)
tmsxpsval.c (𝜑𝐶𝑋)
tmsxpsval.d (𝜑𝐷𝑌)
Assertion
Ref Expression
tmsxpsval (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))

Proof of Theorem tmsxpsval
StepHypRef Expression
1 eqid 2729 . . 3 ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) = ((toMetSp‘𝑀) ×s (toMetSp‘𝑁))
2 eqid 2729 . . 3 (Base‘(toMetSp‘𝑀)) = (Base‘(toMetSp‘𝑀))
3 eqid 2729 . . 3 (Base‘(toMetSp‘𝑁)) = (Base‘(toMetSp‘𝑁))
4 tmsxps.1 . . . 4 (𝜑𝑀 ∈ (∞Met‘𝑋))
5 eqid 2729 . . . . 5 (toMetSp‘𝑀) = (toMetSp‘𝑀)
65tmsxms 24374 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → (toMetSp‘𝑀) ∈ ∞MetSp)
74, 6syl 17 . . 3 (𝜑 → (toMetSp‘𝑀) ∈ ∞MetSp)
8 tmsxps.2 . . . 4 (𝜑𝑁 ∈ (∞Met‘𝑌))
9 eqid 2729 . . . . 5 (toMetSp‘𝑁) = (toMetSp‘𝑁)
109tmsxms 24374 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → (toMetSp‘𝑁) ∈ ∞MetSp)
118, 10syl 17 . . 3 (𝜑 → (toMetSp‘𝑁) ∈ ∞MetSp)
12 tmsxps.p . . 3 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
13 eqid 2729 . . 3 ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) = ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))
14 eqid 2729 . . 3 ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) = ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))
155tmsds 24372 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → 𝑀 = (dist‘(toMetSp‘𝑀)))
164, 15syl 17 . . . . 5 (𝜑𝑀 = (dist‘(toMetSp‘𝑀)))
175tmsbas 24371 . . . . . . 7 (𝑀 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘(toMetSp‘𝑀)))
184, 17syl 17 . . . . . 6 (𝜑𝑋 = (Base‘(toMetSp‘𝑀)))
1918fveq2d 6862 . . . . 5 (𝜑 → (∞Met‘𝑋) = (∞Met‘(Base‘(toMetSp‘𝑀))))
204, 16, 193eltr3d 2842 . . . 4 (𝜑 → (dist‘(toMetSp‘𝑀)) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))))
21 ssid 3969 . . . 4 (Base‘(toMetSp‘𝑀)) ⊆ (Base‘(toMetSp‘𝑀))
22 xmetres2 24249 . . . 4 (((dist‘(toMetSp‘𝑀)) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))) ∧ (Base‘(toMetSp‘𝑀)) ⊆ (Base‘(toMetSp‘𝑀))) → ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))))
2320, 21, 22sylancl 586 . . 3 (𝜑 → ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))))
249tmsds 24372 . . . . . 6 (𝑁 ∈ (∞Met‘𝑌) → 𝑁 = (dist‘(toMetSp‘𝑁)))
258, 24syl 17 . . . . 5 (𝜑𝑁 = (dist‘(toMetSp‘𝑁)))
269tmsbas 24371 . . . . . . 7 (𝑁 ∈ (∞Met‘𝑌) → 𝑌 = (Base‘(toMetSp‘𝑁)))
278, 26syl 17 . . . . . 6 (𝜑𝑌 = (Base‘(toMetSp‘𝑁)))
2827fveq2d 6862 . . . . 5 (𝜑 → (∞Met‘𝑌) = (∞Met‘(Base‘(toMetSp‘𝑁))))
298, 25, 283eltr3d 2842 . . . 4 (𝜑 → (dist‘(toMetSp‘𝑁)) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))))
30 ssid 3969 . . . 4 (Base‘(toMetSp‘𝑁)) ⊆ (Base‘(toMetSp‘𝑁))
31 xmetres2 24249 . . . 4 (((dist‘(toMetSp‘𝑁)) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))) ∧ (Base‘(toMetSp‘𝑁)) ⊆ (Base‘(toMetSp‘𝑁))) → ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))))
3229, 30, 31sylancl 586 . . 3 (𝜑 → ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))))
33 tmsxpsval.a . . . 4 (𝜑𝐴𝑋)
3433, 18eleqtrd 2830 . . 3 (𝜑𝐴 ∈ (Base‘(toMetSp‘𝑀)))
35 tmsxpsval.b . . . 4 (𝜑𝐵𝑌)
3635, 27eleqtrd 2830 . . 3 (𝜑𝐵 ∈ (Base‘(toMetSp‘𝑁)))
37 tmsxpsval.c . . . 4 (𝜑𝐶𝑋)
3837, 18eleqtrd 2830 . . 3 (𝜑𝐶 ∈ (Base‘(toMetSp‘𝑀)))
39 tmsxpsval.d . . . 4 (𝜑𝐷𝑌)
4039, 27eleqtrd 2830 . . 3 (𝜑𝐷 ∈ (Base‘(toMetSp‘𝑁)))
411, 2, 3, 7, 11, 12, 13, 14, 23, 32, 34, 36, 38, 40xpsdsval 24269 . 2 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)}, ℝ*, < ))
4234, 38ovresd 7556 . . . . 5 (𝜑 → (𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶) = (𝐴(dist‘(toMetSp‘𝑀))𝐶))
4316oveqd 7404 . . . . 5 (𝜑 → (𝐴𝑀𝐶) = (𝐴(dist‘(toMetSp‘𝑀))𝐶))
4442, 43eqtr4d 2767 . . . 4 (𝜑 → (𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶) = (𝐴𝑀𝐶))
4536, 40ovresd 7556 . . . . 5 (𝜑 → (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷) = (𝐵(dist‘(toMetSp‘𝑁))𝐷))
4625oveqd 7404 . . . . 5 (𝜑 → (𝐵𝑁𝐷) = (𝐵(dist‘(toMetSp‘𝑁))𝐷))
4745, 46eqtr4d 2767 . . . 4 (𝜑 → (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷) = (𝐵𝑁𝐷))
4844, 47preq12d 4705 . . 3 (𝜑 → {(𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)} = {(𝐴𝑀𝐶), (𝐵𝑁𝐷)})
4948supeq1d 9397 . 2 (𝜑 → sup({(𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)}, ℝ*, < ) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
5041, 49eqtrd 2764 1 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  {cpr 4591  cop 4595   × cxp 5636  cres 5640  cfv 6511  (class class class)co 7387  supcsup 9391  *cxr 11207   < clt 11208  Basecbs 17179  distcds 17229   ×s cxps 17469  ∞Metcxmet 21249  ∞MetSpcxms 24205  toMetSpctms 24207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-prds 17410  df-xrs 17465  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-xms 24208  df-tms 24210
This theorem is referenced by:  tmsxpsval2  24427
  Copyright terms: Public domain W3C validator