| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > elhmop | Structured version Visualization version GIF version | ||
| Description: Property defining a Hermitian Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elhmop | ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6821 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑦) = (𝑇‘𝑦)) | |
| 2 | 1 | oveq2d 7362 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑥 ·ih (𝑡‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦))) |
| 3 | fveq1 6821 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
| 4 | 3 | oveq1d 7361 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
| 5 | 2, 4 | eqeq12d 2747 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑥 ·ih (𝑡‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) |
| 6 | 5 | 2ralbidv 3196 | . . 3 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) |
| 7 | df-hmop 31824 | . . 3 ⊢ HrmOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)} | |
| 8 | 6, 7 | elrab2 3645 | . 2 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) |
| 9 | ax-hilex 30979 | . . . 4 ⊢ ℋ ∈ V | |
| 10 | 9, 9 | elmap 8795 | . . 3 ⊢ (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ) |
| 11 | 10 | anbi1i 624 | . 2 ⊢ ((𝑇 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) |
| 12 | 8, 11 | bitri 275 | 1 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℋchba 30899 ·ih csp 30902 HrmOpcho 30930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-hilex 30979 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-hmop 31824 |
| This theorem is referenced by: hmopf 31854 hmop 31902 hmopadj2 31921 idhmop 31962 0hmop 31963 lnophmi 31998 hmops 32000 hmopm 32001 hmopco 32003 pjhmopi 32126 |
| Copyright terms: Public domain | W3C validator |