Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > bra11 | Structured version Visualization version GIF version |
Description: The bra function maps vectors one-to-one onto the set of continuous linear functionals. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bra11 | ⊢ bra: ℋ–1-1-onto→(LinFn ∩ ContFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 28866 | . . . 4 ⊢ ℋ ∈ V | |
2 | 1 | mptex 6970 | . . 3 ⊢ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥)) ∈ V |
3 | df-bra 29717 | . . 3 ⊢ bra = (𝑥 ∈ ℋ ↦ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥))) | |
4 | 2, 3 | fnmpti 6467 | . 2 ⊢ bra Fn ℋ |
5 | rnbra 29974 | . 2 ⊢ ran bra = (LinFn ∩ ContFn) | |
6 | fveq1 6650 | . . . . . 6 ⊢ ((bra‘𝑥) = (bra‘𝑦) → ((bra‘𝑥)‘𝑧) = ((bra‘𝑦)‘𝑧)) | |
7 | braval 29811 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((bra‘𝑥)‘𝑧) = (𝑧 ·ih 𝑥)) | |
8 | 7 | adantlr 715 | . . . . . . 7 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((bra‘𝑥)‘𝑧) = (𝑧 ·ih 𝑥)) |
9 | braval 29811 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((bra‘𝑦)‘𝑧) = (𝑧 ·ih 𝑦)) | |
10 | 9 | adantll 714 | . . . . . . 7 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((bra‘𝑦)‘𝑧) = (𝑧 ·ih 𝑦)) |
11 | 8, 10 | eqeq12d 2775 | . . . . . 6 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (((bra‘𝑥)‘𝑧) = ((bra‘𝑦)‘𝑧) ↔ (𝑧 ·ih 𝑥) = (𝑧 ·ih 𝑦))) |
12 | 6, 11 | syl5ib 247 | . . . . 5 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((bra‘𝑥) = (bra‘𝑦) → (𝑧 ·ih 𝑥) = (𝑧 ·ih 𝑦))) |
13 | 12 | ralrimdva 3116 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝑥) = (bra‘𝑦) → ∀𝑧 ∈ ℋ (𝑧 ·ih 𝑥) = (𝑧 ·ih 𝑦))) |
14 | hial2eq2 28974 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (∀𝑧 ∈ ℋ (𝑧 ·ih 𝑥) = (𝑧 ·ih 𝑦) ↔ 𝑥 = 𝑦)) | |
15 | 13, 14 | sylibd 242 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝑥) = (bra‘𝑦) → 𝑥 = 𝑦)) |
16 | 15 | rgen2 3130 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((bra‘𝑥) = (bra‘𝑦) → 𝑥 = 𝑦) |
17 | dff1o6 7017 | . 2 ⊢ (bra: ℋ–1-1-onto→(LinFn ∩ ContFn) ↔ (bra Fn ℋ ∧ ran bra = (LinFn ∩ ContFn) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((bra‘𝑥) = (bra‘𝑦) → 𝑥 = 𝑦))) | |
18 | 4, 5, 16, 17 | mpbir3an 1339 | 1 ⊢ bra: ℋ–1-1-onto→(LinFn ∩ ContFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3068 ∩ cin 3853 ↦ cmpt 5105 ran crn 5518 Fn wfn 6323 –1-1-onto→wf1o 6327 ‘cfv 6328 (class class class)co 7143 ℋchba 28786 ·ih csp 28789 ContFnccnfn 28820 LinFnclf 28821 bracbr 28823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-inf2 9122 ax-cc 9880 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 ax-pre-sup 10638 ax-addf 10639 ax-mulf 10640 ax-hilex 28866 ax-hfvadd 28867 ax-hvcom 28868 ax-hvass 28869 ax-hv0cl 28870 ax-hvaddid 28871 ax-hfvmul 28872 ax-hvmulid 28873 ax-hvmulass 28874 ax-hvdistr1 28875 ax-hvdistr2 28876 ax-hvmul0 28877 ax-hfi 28946 ax-his1 28949 ax-his2 28950 ax-his3 28951 ax-his4 28952 ax-hcompl 29069 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rmo 3076 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-iin 4879 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-se 5477 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-isom 6337 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-of 7398 df-om 7573 df-1st 7686 df-2nd 7687 df-supp 7829 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-1o 8105 df-2o 8106 df-oadd 8109 df-omul 8110 df-er 8292 df-map 8411 df-pm 8412 df-ixp 8473 df-en 8521 df-dom 8522 df-sdom 8523 df-fin 8524 df-fsupp 8852 df-fi 8893 df-sup 8924 df-inf 8925 df-oi 8992 df-card 9386 df-acn 9389 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-div 11321 df-nn 11660 df-2 11722 df-3 11723 df-4 11724 df-5 11725 df-6 11726 df-7 11727 df-8 11728 df-9 11729 df-n0 11920 df-z 12006 df-dec 12123 df-uz 12268 df-q 12374 df-rp 12416 df-xneg 12533 df-xadd 12534 df-xmul 12535 df-ioo 12768 df-ico 12770 df-icc 12771 df-fz 12925 df-fzo 13068 df-fl 13196 df-seq 13404 df-exp 13465 df-hash 13726 df-cj 14491 df-re 14492 df-im 14493 df-sqrt 14627 df-abs 14628 df-clim 14878 df-rlim 14879 df-sum 15076 df-struct 16528 df-ndx 16529 df-slot 16530 df-base 16532 df-sets 16533 df-ress 16534 df-plusg 16621 df-mulr 16622 df-starv 16623 df-sca 16624 df-vsca 16625 df-ip 16626 df-tset 16627 df-ple 16628 df-ds 16630 df-unif 16631 df-hom 16632 df-cco 16633 df-rest 16739 df-topn 16740 df-0g 16758 df-gsum 16759 df-topgen 16760 df-pt 16761 df-prds 16764 df-xrs 16818 df-qtop 16823 df-imas 16824 df-xps 16826 df-mre 16900 df-mrc 16901 df-acs 16903 df-mgm 17903 df-sgrp 17952 df-mnd 17963 df-submnd 18008 df-mulg 18277 df-cntz 18499 df-cmn 18960 df-psmet 20143 df-xmet 20144 df-met 20145 df-bl 20146 df-mopn 20147 df-fbas 20148 df-fg 20149 df-cnfld 20152 df-top 21579 df-topon 21596 df-topsp 21618 df-bases 21631 df-cld 21704 df-ntr 21705 df-cls 21706 df-nei 21783 df-cn 21912 df-cnp 21913 df-lm 21914 df-t1 21999 df-haus 22000 df-tx 22247 df-hmeo 22440 df-fil 22531 df-fm 22623 df-flim 22624 df-flf 22625 df-xms 23007 df-ms 23008 df-tms 23009 df-cfil 23940 df-cau 23941 df-cmet 23942 df-grpo 28360 df-gid 28361 df-ginv 28362 df-gdiv 28363 df-ablo 28412 df-vc 28426 df-nv 28459 df-va 28462 df-ba 28463 df-sm 28464 df-0v 28465 df-vs 28466 df-nmcv 28467 df-ims 28468 df-dip 28568 df-ssp 28589 df-ph 28680 df-cbn 28730 df-hnorm 28835 df-hba 28836 df-hvsub 28838 df-hlim 28839 df-hcau 28840 df-sh 29074 df-ch 29088 df-oc 29119 df-ch0 29120 df-nmfn 29712 df-nlfn 29713 df-cnfn 29714 df-lnfn 29715 df-bra 29717 |
This theorem is referenced by: bracnln 29976 cnvbraval 29977 cnvbracl 29978 cnvbrabra 29979 bracnvbra 29980 bracnlnval 29981 |
Copyright terms: Public domain | W3C validator |