HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ellnop Structured version   Visualization version   GIF version

Theorem ellnop 31840
Description: Property defining a linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ellnop (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑇

Proof of Theorem ellnop
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6827 . . . . . 6 (𝑡 = 𝑇 → (𝑡‘((𝑥 · 𝑦) + 𝑧)) = (𝑇‘((𝑥 · 𝑦) + 𝑧)))
2 fveq1 6827 . . . . . . . 8 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
32oveq2d 7368 . . . . . . 7 (𝑡 = 𝑇 → (𝑥 · (𝑡𝑦)) = (𝑥 · (𝑇𝑦)))
4 fveq1 6827 . . . . . . 7 (𝑡 = 𝑇 → (𝑡𝑧) = (𝑇𝑧))
53, 4oveq12d 7370 . . . . . 6 (𝑡 = 𝑇 → ((𝑥 · (𝑡𝑦)) + (𝑡𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
61, 5eqeq12d 2749 . . . . 5 (𝑡 = 𝑇 → ((𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧)) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
76ralbidv 3156 . . . 4 (𝑡 = 𝑇 → (∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧)) ↔ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
872ralbidv 3197 . . 3 (𝑡 = 𝑇 → (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧)) ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
9 df-lnop 31823 . . 3 LinOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))}
108, 9elrab2 3646 . 2 (𝑇 ∈ LinOp ↔ (𝑇 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
11 ax-hilex 30981 . . . 4 ℋ ∈ V
1211, 11elmap 8801 . . 3 (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ)
1312anbi1i 624 . 2 ((𝑇 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
1410, 13bitri 275 1 (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wf 6482  cfv 6486  (class class class)co 7352  m cmap 8756  cc 11011  chba 30901   + cva 30902   · csm 30903  LinOpclo 30929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-hilex 30981
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-lnop 31823
This theorem is referenced by:  lnopf  31841  lnopl  31896  unoplin  31902  hmoplin  31924  lnopmi  31982  lnophsi  31983  lnopcoi  31985  cnlnadjlem6  32054  adjlnop  32068
  Copyright terms: Public domain W3C validator