HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ellnop Structured version   Visualization version   GIF version

Theorem ellnop 31877
Description: Property defining a linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ellnop (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑇

Proof of Theorem ellnop
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6905 . . . . . 6 (𝑡 = 𝑇 → (𝑡‘((𝑥 · 𝑦) + 𝑧)) = (𝑇‘((𝑥 · 𝑦) + 𝑧)))
2 fveq1 6905 . . . . . . . 8 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
32oveq2d 7447 . . . . . . 7 (𝑡 = 𝑇 → (𝑥 · (𝑡𝑦)) = (𝑥 · (𝑇𝑦)))
4 fveq1 6905 . . . . . . 7 (𝑡 = 𝑇 → (𝑡𝑧) = (𝑇𝑧))
53, 4oveq12d 7449 . . . . . 6 (𝑡 = 𝑇 → ((𝑥 · (𝑡𝑦)) + (𝑡𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
61, 5eqeq12d 2753 . . . . 5 (𝑡 = 𝑇 → ((𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧)) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
76ralbidv 3178 . . . 4 (𝑡 = 𝑇 → (∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧)) ↔ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
872ralbidv 3221 . . 3 (𝑡 = 𝑇 → (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧)) ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
9 df-lnop 31860 . . 3 LinOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))}
108, 9elrab2 3695 . 2 (𝑇 ∈ LinOp ↔ (𝑇 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
11 ax-hilex 31018 . . . 4 ℋ ∈ V
1211, 11elmap 8911 . . 3 (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ)
1312anbi1i 624 . 2 ((𝑇 ∈ ( ℋ ↑m ℋ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
1410, 13bitri 275 1 (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  cc 11153  chba 30938   + cva 30939   · csm 30940  LinOpclo 30966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-hilex 31018
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-lnop 31860
This theorem is referenced by:  lnopf  31878  lnopl  31933  unoplin  31939  hmoplin  31961  lnopmi  32019  lnophsi  32020  lnopcoi  32022  cnlnadjlem6  32091  adjlnop  32105
  Copyright terms: Public domain W3C validator