MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nofnbday Structured version   Visualization version   GIF version

Theorem nofnbday 27570
Description: A surreal is a function over its birthday. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nofnbday (𝐴 No 𝐴 Fn ( bday 𝐴))

Proof of Theorem nofnbday
StepHypRef Expression
1 nofun 27567 . 2 (𝐴 No → Fun 𝐴)
2 bdayval 27566 . . 3 (𝐴 No → ( bday 𝐴) = dom 𝐴)
32eqcomd 2736 . 2 (𝐴 No → dom 𝐴 = ( bday 𝐴))
4 df-fn 6516 . 2 (𝐴 Fn ( bday 𝐴) ↔ (Fun 𝐴 ∧ dom 𝐴 = ( bday 𝐴)))
51, 3, 4sylanbrc 583 1 (𝐴 No 𝐴 Fn ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  dom cdm 5640  Fun wfun 6507   Fn wfn 6508  cfv 6513   No csur 27557   bday cbday 27559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-no 27560  df-bday 27562
This theorem is referenced by:  nodenselem8  27609
  Copyright terms: Public domain W3C validator