MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nofnbday Structured version   Visualization version   GIF version

Theorem nofnbday 27712
Description: A surreal is a function over its birthday. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nofnbday (𝐴 No 𝐴 Fn ( bday 𝐴))

Proof of Theorem nofnbday
StepHypRef Expression
1 nofun 27709 . 2 (𝐴 No → Fun 𝐴)
2 bdayval 27708 . . 3 (𝐴 No → ( bday 𝐴) = dom 𝐴)
32eqcomd 2741 . 2 (𝐴 No → dom 𝐴 = ( bday 𝐴))
4 df-fn 6566 . 2 (𝐴 Fn ( bday 𝐴) ↔ (Fun 𝐴 ∧ dom 𝐴 = ( bday 𝐴)))
51, 3, 4sylanbrc 583 1 (𝐴 No 𝐴 Fn ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  dom cdm 5689  Fun wfun 6557   Fn wfn 6558  cfv 6563   No csur 27699   bday cbday 27701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-no 27702  df-bday 27704
This theorem is referenced by:  nodenselem8  27751
  Copyright terms: Public domain W3C validator