MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nofnbday Structured version   Visualization version   GIF version

Theorem nofnbday 27584
Description: A surreal is a function over its birthday. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nofnbday (𝐴 No 𝐴 Fn ( bday 𝐴))

Proof of Theorem nofnbday
StepHypRef Expression
1 nofun 27581 . 2 (𝐴 No → Fun 𝐴)
2 bdayval 27580 . . 3 (𝐴 No → ( bday 𝐴) = dom 𝐴)
32eqcomd 2734 . 2 (𝐴 No → dom 𝐴 = ( bday 𝐴))
4 df-fn 6551 . 2 (𝐴 Fn ( bday 𝐴) ↔ (Fun 𝐴 ∧ dom 𝐴 = ( bday 𝐴)))
51, 3, 4sylanbrc 582 1 (𝐴 No 𝐴 Fn ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  dom cdm 5678  Fun wfun 6542   Fn wfn 6543  cfv 6548   No csur 27572   bday cbday 27574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-no 27575  df-bday 27577
This theorem is referenced by:  nodenselem8  27623
  Copyright terms: Public domain W3C validator