MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nofnbday Structured version   Visualization version   GIF version

Theorem nofnbday 27715
Description: A surreal is a function over its birthday. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nofnbday (𝐴 No 𝐴 Fn ( bday 𝐴))

Proof of Theorem nofnbday
StepHypRef Expression
1 nofun 27712 . 2 (𝐴 No → Fun 𝐴)
2 bdayval 27711 . . 3 (𝐴 No → ( bday 𝐴) = dom 𝐴)
32eqcomd 2746 . 2 (𝐴 No → dom 𝐴 = ( bday 𝐴))
4 df-fn 6576 . 2 (𝐴 Fn ( bday 𝐴) ↔ (Fun 𝐴 ∧ dom 𝐴 = ( bday 𝐴)))
51, 3, 4sylanbrc 582 1 (𝐴 No 𝐴 Fn ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  dom cdm 5700  Fun wfun 6567   Fn wfn 6568  cfv 6573   No csur 27702   bday cbday 27704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-no 27705  df-bday 27707
This theorem is referenced by:  nodenselem8  27754
  Copyright terms: Public domain W3C validator