Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nofnbday | Structured version Visualization version GIF version |
Description: A surreal is a function over its birthday. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nofnbday | ⊢ (𝐴 ∈ No → 𝐴 Fn ( bday ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nofun 33589 | . 2 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
2 | bdayval 33588 | . . 3 ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | |
3 | 2 | eqcomd 2743 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 = ( bday ‘𝐴)) |
4 | df-fn 6383 | . 2 ⊢ (𝐴 Fn ( bday ‘𝐴) ↔ (Fun 𝐴 ∧ dom 𝐴 = ( bday ‘𝐴))) | |
5 | 1, 3, 4 | sylanbrc 586 | 1 ⊢ (𝐴 ∈ No → 𝐴 Fn ( bday ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 dom cdm 5551 Fun wfun 6374 Fn wfn 6375 ‘cfv 6380 No csur 33580 bday cbday 33582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-no 33583 df-bday 33585 |
This theorem is referenced by: nodenselem8 33631 |
Copyright terms: Public domain | W3C validator |