| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nofnbday | Structured version Visualization version GIF version | ||
| Description: A surreal is a function over its birthday. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nofnbday | ⊢ (𝐴 ∈ No → 𝐴 Fn ( bday ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nofun 27695 | . 2 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
| 2 | bdayval 27694 | . . 3 ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | |
| 3 | 2 | eqcomd 2742 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 = ( bday ‘𝐴)) |
| 4 | df-fn 6563 | . 2 ⊢ (𝐴 Fn ( bday ‘𝐴) ↔ (Fun 𝐴 ∧ dom 𝐴 = ( bday ‘𝐴))) | |
| 5 | 1, 3, 4 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ No → 𝐴 Fn ( bday ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 dom cdm 5684 Fun wfun 6554 Fn wfn 6555 ‘cfv 6560 No csur 27685 bday cbday 27687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-no 27688 df-bday 27690 |
| This theorem is referenced by: nodenselem8 27737 |
| Copyright terms: Public domain | W3C validator |