![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nofnbday | Structured version Visualization version GIF version |
Description: A surreal is a function over its birthday. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nofnbday | ⊢ (𝐴 ∈ No → 𝐴 Fn ( bday ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nofun 32677 | . 2 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
2 | bdayval 32676 | . . 3 ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | |
3 | 2 | eqcomd 2778 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 = ( bday ‘𝐴)) |
4 | df-fn 6185 | . 2 ⊢ (𝐴 Fn ( bday ‘𝐴) ↔ (Fun 𝐴 ∧ dom 𝐴 = ( bday ‘𝐴))) | |
5 | 1, 3, 4 | sylanbrc 575 | 1 ⊢ (𝐴 ∈ No → 𝐴 Fn ( bday ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 dom cdm 5401 Fun wfun 6176 Fn wfn 6177 ‘cfv 6182 No csur 32668 bday cbday 32670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5306 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-no 32671 df-bday 32673 |
This theorem is referenced by: nodenselem8 32716 |
Copyright terms: Public domain | W3C validator |