| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nofun | Structured version Visualization version GIF version | ||
| Description: A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nofun | ⊢ (𝐴 ∈ No → Fun 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27564 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | ffun 6694 | . . 3 ⊢ (𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) | |
| 3 | 2 | rexlimivw 3131 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → Fun 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3054 {cpr 4594 Oncon0 6335 Fun wfun 6508 ⟶wf 6510 1oc1o 8430 2oc2o 8431 No csur 27558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 df-no 27561 |
| This theorem is referenced by: nofnbday 27571 elno2 27573 nofv 27576 sltres 27581 nosepon 27584 noextend 27585 noextendseq 27586 noextenddif 27587 noextendlt 27588 noextendgt 27589 nolesgn2ores 27591 nogesgn1ores 27593 nosepssdm 27605 nolt02olem 27613 nolt02o 27614 nogt01o 27615 nosupno 27622 nosupres 27626 nosupbnd1lem5 27631 nosupbnd1 27633 nosupbnd2lem1 27634 nosupbnd2 27635 noinfno 27637 noinfres 27641 noinfbnd1lem5 27646 noinfbnd1 27648 noinfbnd2lem1 27649 noinfbnd2 27650 noetasuplem2 27653 noetasuplem3 27654 noetasuplem4 27655 noetainflem2 27657 noetainflem4 27659 |
| Copyright terms: Public domain | W3C validator |