Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nofun | Structured version Visualization version GIF version |
Description: A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nofun | ⊢ (𝐴 ∈ No → Fun 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elno 26900 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
2 | ffun 6654 | . . 3 ⊢ (𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) | |
3 | 2 | rexlimivw 3144 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝐴 ∈ No → Fun 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∃wrex 3070 {cpr 4575 Oncon0 6302 Fun wfun 6473 ⟶wf 6475 1oc1o 8360 2oc2o 8361 No csur 26894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-no 26897 |
This theorem is referenced by: nofnbday 26906 elno2 26908 nofv 26911 sltres 26916 nosepon 26919 noextend 26920 noextendseq 26921 noextenddif 26922 noextendlt 26923 noextendgt 26924 nolesgn2ores 26926 nogesgn1ores 26928 nosepssdm 26940 nolt02olem 26948 nolt02o 26949 nogt01o 26950 nosupno 26957 nosupres 26961 nosupbnd1lem5 26966 nosupbnd1 26968 nosupbnd2lem1 26969 nosupbnd2 26970 noinfno 26972 noinfres 26976 noinfbnd1lem5 26981 noinfbnd1 26983 noinfbnd2lem1 26984 noinfbnd2 26985 noetasuplem2 26988 noetasuplem3 26989 noetasuplem4 26990 noetainflem2 26992 noetainflem4 26994 |
Copyright terms: Public domain | W3C validator |