| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nofun | Structured version Visualization version GIF version | ||
| Description: A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nofun | ⊢ (𝐴 ∈ No → Fun 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27609 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | ffun 6709 | . . 3 ⊢ (𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) | |
| 3 | 2 | rexlimivw 3137 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → Fun 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3060 {cpr 4603 Oncon0 6352 Fun wfun 6525 ⟶wf 6527 1oc1o 8473 2oc2o 8474 No csur 27603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-no 27606 |
| This theorem is referenced by: nofnbday 27616 elno2 27618 nofv 27621 sltres 27626 nosepon 27629 noextend 27630 noextendseq 27631 noextenddif 27632 noextendlt 27633 noextendgt 27634 nolesgn2ores 27636 nogesgn1ores 27638 nosepssdm 27650 nolt02olem 27658 nolt02o 27659 nogt01o 27660 nosupno 27667 nosupres 27671 nosupbnd1lem5 27676 nosupbnd1 27678 nosupbnd2lem1 27679 nosupbnd2 27680 noinfno 27682 noinfres 27686 noinfbnd1lem5 27691 noinfbnd1 27693 noinfbnd2lem1 27694 noinfbnd2 27695 noetasuplem2 27698 noetasuplem3 27699 noetasuplem4 27700 noetainflem2 27702 noetainflem4 27704 |
| Copyright terms: Public domain | W3C validator |