| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nofun | Structured version Visualization version GIF version | ||
| Description: A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nofun | ⊢ (𝐴 ∈ No → Fun 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27585 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | ffun 6659 | . . 3 ⊢ (𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) | |
| 3 | 2 | rexlimivw 3130 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → Fun 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∃wrex 3057 {cpr 4577 Oncon0 6311 Fun wfun 6480 ⟶wf 6482 1oc1o 8384 2oc2o 8385 No csur 27579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 df-no 27582 |
| This theorem is referenced by: nofnbday 27592 elno2 27594 nofv 27597 sltres 27602 nosepon 27605 noextend 27606 noextendseq 27607 noextenddif 27608 noextendlt 27609 noextendgt 27610 nolesgn2ores 27612 nogesgn1ores 27614 nosepssdm 27626 nolt02olem 27634 nolt02o 27635 nogt01o 27636 nosupno 27643 nosupres 27647 nosupbnd1lem5 27652 nosupbnd1 27654 nosupbnd2lem1 27655 nosupbnd2 27656 noinfno 27658 noinfres 27662 noinfbnd1lem5 27667 noinfbnd1 27669 noinfbnd2lem1 27670 noinfbnd2 27671 noetasuplem2 27674 noetasuplem3 27675 noetasuplem4 27676 noetainflem2 27678 noetainflem4 27680 |
| Copyright terms: Public domain | W3C validator |