| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nofun | Structured version Visualization version GIF version | ||
| Description: A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nofun | ⊢ (𝐴 ∈ No → Fun 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27627 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | ffun 6719 | . . 3 ⊢ (𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) | |
| 3 | 2 | rexlimivw 3138 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → Fun 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∃wrex 3059 {cpr 4608 Oncon0 6363 Fun wfun 6535 ⟶wf 6537 1oc1o 8481 2oc2o 8482 No csur 27621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-fun 6543 df-fn 6544 df-f 6545 df-no 27624 |
| This theorem is referenced by: nofnbday 27634 elno2 27636 nofv 27639 sltres 27644 nosepon 27647 noextend 27648 noextendseq 27649 noextenddif 27650 noextendlt 27651 noextendgt 27652 nolesgn2ores 27654 nogesgn1ores 27656 nosepssdm 27668 nolt02olem 27676 nolt02o 27677 nogt01o 27678 nosupno 27685 nosupres 27689 nosupbnd1lem5 27694 nosupbnd1 27696 nosupbnd2lem1 27697 nosupbnd2 27698 noinfno 27700 noinfres 27704 noinfbnd1lem5 27709 noinfbnd1 27711 noinfbnd2lem1 27712 noinfbnd2 27713 noetasuplem2 27716 noetasuplem3 27717 noetasuplem4 27718 noetainflem2 27720 noetainflem4 27722 |
| Copyright terms: Public domain | W3C validator |