MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nofun Structured version   Visualization version   GIF version

Theorem nofun 27613
Description: A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nofun (𝐴 No → Fun 𝐴)

Proof of Theorem nofun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elno 27609 . 2 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
2 ffun 6709 . . 3 (𝐴:𝑥⟶{1o, 2o} → Fun 𝐴)
32rexlimivw 3137 . 2 (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → Fun 𝐴)
41, 3sylbi 217 1 (𝐴 No → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wrex 3060  {cpr 4603  Oncon0 6352  Fun wfun 6525  wf 6527  1oc1o 8473  2oc2o 8474   No csur 27603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-fun 6533  df-fn 6534  df-f 6535  df-no 27606
This theorem is referenced by:  nofnbday  27616  elno2  27618  nofv  27621  sltres  27626  nosepon  27629  noextend  27630  noextendseq  27631  noextenddif  27632  noextendlt  27633  noextendgt  27634  nolesgn2ores  27636  nogesgn1ores  27638  nosepssdm  27650  nolt02olem  27658  nolt02o  27659  nogt01o  27660  nosupno  27667  nosupres  27671  nosupbnd1lem5  27676  nosupbnd1  27678  nosupbnd2lem1  27679  nosupbnd2  27680  noinfno  27682  noinfres  27686  noinfbnd1lem5  27691  noinfbnd1  27693  noinfbnd2lem1  27694  noinfbnd2  27695  noetasuplem2  27698  noetasuplem3  27699  noetasuplem4  27700  noetainflem2  27702  noetainflem4  27704
  Copyright terms: Public domain W3C validator