| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nofun | Structured version Visualization version GIF version | ||
| Description: A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nofun | ⊢ (𝐴 ∈ No → Fun 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27582 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | ffun 6654 | . . 3 ⊢ (𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) | |
| 3 | 2 | rexlimivw 3129 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → Fun 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃wrex 3056 {cpr 4578 Oncon0 6306 Fun wfun 6475 ⟶wf 6477 1oc1o 8378 2oc2o 8379 No csur 27576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 df-no 27579 |
| This theorem is referenced by: nofnbday 27589 elno2 27591 nofv 27594 sltres 27599 nosepon 27602 noextend 27603 noextendseq 27604 noextenddif 27605 noextendlt 27606 noextendgt 27607 nolesgn2ores 27609 nogesgn1ores 27611 nosepssdm 27623 nolt02olem 27631 nolt02o 27632 nogt01o 27633 nosupno 27640 nosupres 27644 nosupbnd1lem5 27649 nosupbnd1 27651 nosupbnd2lem1 27652 nosupbnd2 27653 noinfno 27655 noinfres 27659 noinfbnd1lem5 27664 noinfbnd1 27666 noinfbnd2lem1 27667 noinfbnd2 27668 noetasuplem2 27671 noetasuplem3 27672 noetasuplem4 27673 noetainflem2 27675 noetainflem4 27677 |
| Copyright terms: Public domain | W3C validator |