| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nofun | Structured version Visualization version GIF version | ||
| Description: A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nofun | ⊢ (𝐴 ∈ No → Fun 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27557 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | ffun 6691 | . . 3 ⊢ (𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) | |
| 3 | 2 | rexlimivw 3130 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → Fun 𝐴) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → Fun 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 {cpr 4591 Oncon0 6332 Fun wfun 6505 ⟶wf 6507 1oc1o 8427 2oc2o 8428 No csur 27551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-no 27554 |
| This theorem is referenced by: nofnbday 27564 elno2 27566 nofv 27569 sltres 27574 nosepon 27577 noextend 27578 noextendseq 27579 noextenddif 27580 noextendlt 27581 noextendgt 27582 nolesgn2ores 27584 nogesgn1ores 27586 nosepssdm 27598 nolt02olem 27606 nolt02o 27607 nogt01o 27608 nosupno 27615 nosupres 27619 nosupbnd1lem5 27624 nosupbnd1 27626 nosupbnd2lem1 27627 nosupbnd2 27628 noinfno 27630 noinfres 27634 noinfbnd1lem5 27639 noinfbnd1 27641 noinfbnd2lem1 27642 noinfbnd2 27643 noetasuplem2 27646 noetasuplem3 27647 noetasuplem4 27648 noetainflem2 27650 noetainflem4 27652 |
| Copyright terms: Public domain | W3C validator |