Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restuni2 Structured version   Visualization version   GIF version

Theorem bj-restuni2 36816
Description: The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni 23152 and restuni2 23157. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restuni2 ((𝑋𝑉𝐴 𝑋) → (𝑋t 𝐴) = 𝐴)

Proof of Theorem bj-restuni2
StepHypRef Expression
1 uniexg 7741 . . . . 5 (𝑋𝑉 𝑋 ∈ V)
2 ssexg 5319 . . . . 5 ((𝐴 𝑋 𝑋 ∈ V) → 𝐴 ∈ V)
31, 2sylan2 591 . . . 4 ((𝐴 𝑋𝑋𝑉) → 𝐴 ∈ V)
43ancoms 457 . . 3 ((𝑋𝑉𝐴 𝑋) → 𝐴 ∈ V)
5 bj-restuni 36815 . . 3 ((𝑋𝑉𝐴 ∈ V) → (𝑋t 𝐴) = ( 𝑋𝐴))
64, 5syldan 589 . 2 ((𝑋𝑉𝐴 𝑋) → (𝑋t 𝐴) = ( 𝑋𝐴))
7 inss2 4229 . . . . 5 ( 𝑋𝐴) ⊆ 𝐴
87a1i 11 . . . 4 (𝐴 𝑋 → ( 𝑋𝐴) ⊆ 𝐴)
9 id 22 . . . . 5 (𝐴 𝑋𝐴 𝑋)
10 ssidd 4003 . . . . 5 (𝐴 𝑋𝐴𝐴)
119, 10ssind 4232 . . . 4 (𝐴 𝑋𝐴 ⊆ ( 𝑋𝐴))
128, 11eqssd 3997 . . 3 (𝐴 𝑋 → ( 𝑋𝐴) = 𝐴)
1312adantl 480 . 2 ((𝑋𝑉𝐴 𝑋) → ( 𝑋𝐴) = 𝐴)
146, 13eqtrd 2766 1 ((𝑋𝑉𝐴 𝑋) → (𝑋t 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3463  cin 3946  wss 3947   cuni 4906  (class class class)co 7414  t crest 17428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7417  df-oprab 7418  df-mpo 7419  df-rest 17430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator