![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restuni2 | Structured version Visualization version GIF version |
Description: The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni 23152 and restuni2 23157. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restuni2 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7741 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑋 ∈ V) | |
2 | ssexg 5319 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ 𝑋 ∧ ∪ 𝑋 ∈ V) → 𝐴 ∈ V) | |
3 | 1, 2 | sylan2 591 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐴 ∈ V) |
4 | 3 | ancoms 457 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → 𝐴 ∈ V) |
5 | bj-restuni 36815 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ V) → ∪ (𝑋 ↾t 𝐴) = (∪ 𝑋 ∩ 𝐴)) | |
6 | 4, 5 | syldan 589 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = (∪ 𝑋 ∩ 𝐴)) |
7 | inss2 4229 | . . . . 5 ⊢ (∪ 𝑋 ∩ 𝐴) ⊆ 𝐴 | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑋 → (∪ 𝑋 ∩ 𝐴) ⊆ 𝐴) |
9 | id 22 | . . . . 5 ⊢ (𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ ∪ 𝑋) | |
10 | ssidd 4003 | . . . . 5 ⊢ (𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ 𝐴) | |
11 | 9, 10 | ssind 4232 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ (∪ 𝑋 ∩ 𝐴)) |
12 | 8, 11 | eqssd 3997 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝑋 → (∪ 𝑋 ∩ 𝐴) = 𝐴) |
13 | 12 | adantl 480 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → (∪ 𝑋 ∩ 𝐴) = 𝐴) |
14 | 6, 13 | eqtrd 2766 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3463 ∩ cin 3946 ⊆ wss 3947 ∪ cuni 4906 (class class class)co 7414 ↾t crest 17428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pr 5424 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7417 df-oprab 7418 df-mpo 7419 df-rest 17430 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |