Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restuni2 Structured version   Visualization version   GIF version

Theorem bj-restuni2 37074
Description: The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni 23065 and restuni2 23070. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restuni2 ((𝑋𝑉𝐴 𝑋) → (𝑋t 𝐴) = 𝐴)

Proof of Theorem bj-restuni2
StepHypRef Expression
1 uniexg 7680 . . . . 5 (𝑋𝑉 𝑋 ∈ V)
2 ssexg 5265 . . . . 5 ((𝐴 𝑋 𝑋 ∈ V) → 𝐴 ∈ V)
31, 2sylan2 593 . . . 4 ((𝐴 𝑋𝑋𝑉) → 𝐴 ∈ V)
43ancoms 458 . . 3 ((𝑋𝑉𝐴 𝑋) → 𝐴 ∈ V)
5 bj-restuni 37073 . . 3 ((𝑋𝑉𝐴 ∈ V) → (𝑋t 𝐴) = ( 𝑋𝐴))
64, 5syldan 591 . 2 ((𝑋𝑉𝐴 𝑋) → (𝑋t 𝐴) = ( 𝑋𝐴))
7 inss2 4191 . . . . 5 ( 𝑋𝐴) ⊆ 𝐴
87a1i 11 . . . 4 (𝐴 𝑋 → ( 𝑋𝐴) ⊆ 𝐴)
9 id 22 . . . . 5 (𝐴 𝑋𝐴 𝑋)
10 ssidd 3961 . . . . 5 (𝐴 𝑋𝐴𝐴)
119, 10ssind 4194 . . . 4 (𝐴 𝑋𝐴 ⊆ ( 𝑋𝐴))
128, 11eqssd 3955 . . 3 (𝐴 𝑋 → ( 𝑋𝐴) = 𝐴)
1312adantl 481 . 2 ((𝑋𝑉𝐴 𝑋) → ( 𝑋𝐴) = 𝐴)
146, 13eqtrd 2764 1 ((𝑋𝑉𝐴 𝑋) → (𝑋t 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  wss 3905   cuni 4861  (class class class)co 7353  t crest 17342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-rest 17344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator