| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restuni2 | Structured version Visualization version GIF version | ||
| Description: The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni 23170 and restuni2 23175. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restuni2 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7760 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑋 ∈ V) | |
| 2 | ssexg 5323 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ 𝑋 ∧ ∪ 𝑋 ∈ V) → 𝐴 ∈ V) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐴 ∈ V) |
| 4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → 𝐴 ∈ V) |
| 5 | bj-restuni 37098 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ V) → ∪ (𝑋 ↾t 𝐴) = (∪ 𝑋 ∩ 𝐴)) | |
| 6 | 4, 5 | syldan 591 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = (∪ 𝑋 ∩ 𝐴)) |
| 7 | inss2 4238 | . . . . 5 ⊢ (∪ 𝑋 ∩ 𝐴) ⊆ 𝐴 | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑋 → (∪ 𝑋 ∩ 𝐴) ⊆ 𝐴) |
| 9 | id 22 | . . . . 5 ⊢ (𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ ∪ 𝑋) | |
| 10 | ssidd 4007 | . . . . 5 ⊢ (𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ 𝐴) | |
| 11 | 9, 10 | ssind 4241 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ (∪ 𝑋 ∩ 𝐴)) |
| 12 | 8, 11 | eqssd 4001 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝑋 → (∪ 𝑋 ∩ 𝐴) = 𝐴) |
| 13 | 12 | adantl 481 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → (∪ 𝑋 ∩ 𝐴) = 𝐴) |
| 14 | 6, 13 | eqtrd 2777 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 ∪ cuni 4907 (class class class)co 7431 ↾t crest 17465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-rest 17467 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |