![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restuni2 | Structured version Visualization version GIF version |
Description: The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni 22887 and restuni2 22892. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restuni2 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7733 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑋 ∈ V) | |
2 | ssexg 5324 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ 𝑋 ∧ ∪ 𝑋 ∈ V) → 𝐴 ∈ V) | |
3 | 1, 2 | sylan2 592 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐴 ∈ V) |
4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → 𝐴 ∈ V) |
5 | bj-restuni 36282 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ V) → ∪ (𝑋 ↾t 𝐴) = (∪ 𝑋 ∩ 𝐴)) | |
6 | 4, 5 | syldan 590 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = (∪ 𝑋 ∩ 𝐴)) |
7 | inss2 4230 | . . . . 5 ⊢ (∪ 𝑋 ∩ 𝐴) ⊆ 𝐴 | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑋 → (∪ 𝑋 ∩ 𝐴) ⊆ 𝐴) |
9 | id 22 | . . . . 5 ⊢ (𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ ∪ 𝑋) | |
10 | ssidd 4006 | . . . . 5 ⊢ (𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ 𝐴) | |
11 | 9, 10 | ssind 4233 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ (∪ 𝑋 ∩ 𝐴)) |
12 | 8, 11 | eqssd 4000 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝑋 → (∪ 𝑋 ∩ 𝐴) = 𝐴) |
13 | 12 | adantl 481 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → (∪ 𝑋 ∩ 𝐴) = 𝐴) |
14 | 6, 13 | eqtrd 2771 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∩ cin 3948 ⊆ wss 3949 ∪ cuni 4909 (class class class)co 7412 ↾t crest 17371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-rest 17373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |