| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restuni2 | Structured version Visualization version GIF version | ||
| Description: The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni 23065 and restuni2 23070. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restuni2 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7680 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑋 ∈ V) | |
| 2 | ssexg 5265 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ 𝑋 ∧ ∪ 𝑋 ∈ V) → 𝐴 ∈ V) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐴 ∈ V) |
| 4 | 3 | ancoms 458 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → 𝐴 ∈ V) |
| 5 | bj-restuni 37073 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ V) → ∪ (𝑋 ↾t 𝐴) = (∪ 𝑋 ∩ 𝐴)) | |
| 6 | 4, 5 | syldan 591 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = (∪ 𝑋 ∩ 𝐴)) |
| 7 | inss2 4191 | . . . . 5 ⊢ (∪ 𝑋 ∩ 𝐴) ⊆ 𝐴 | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑋 → (∪ 𝑋 ∩ 𝐴) ⊆ 𝐴) |
| 9 | id 22 | . . . . 5 ⊢ (𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ ∪ 𝑋) | |
| 10 | ssidd 3961 | . . . . 5 ⊢ (𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ 𝐴) | |
| 11 | 9, 10 | ssind 4194 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ (∪ 𝑋 ∩ 𝐴)) |
| 12 | 8, 11 | eqssd 3955 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝑋 → (∪ 𝑋 ∩ 𝐴) = 𝐴) |
| 13 | 12 | adantl 481 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → (∪ 𝑋 ∩ 𝐴) = 𝐴) |
| 14 | 6, 13 | eqtrd 2764 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ∪ cuni 4861 (class class class)co 7353 ↾t crest 17342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-rest 17344 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |