Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restuni2 Structured version   Visualization version   GIF version

Theorem bj-restuni2 35325
Description: The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni 22385 and restuni2 22390. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restuni2 ((𝑋𝑉𝐴 𝑋) → (𝑋t 𝐴) = 𝐴)

Proof of Theorem bj-restuni2
StepHypRef Expression
1 uniexg 7633 . . . . 5 (𝑋𝑉 𝑋 ∈ V)
2 ssexg 5262 . . . . 5 ((𝐴 𝑋 𝑋 ∈ V) → 𝐴 ∈ V)
31, 2sylan2 593 . . . 4 ((𝐴 𝑋𝑋𝑉) → 𝐴 ∈ V)
43ancoms 459 . . 3 ((𝑋𝑉𝐴 𝑋) → 𝐴 ∈ V)
5 bj-restuni 35324 . . 3 ((𝑋𝑉𝐴 ∈ V) → (𝑋t 𝐴) = ( 𝑋𝐴))
64, 5syldan 591 . 2 ((𝑋𝑉𝐴 𝑋) → (𝑋t 𝐴) = ( 𝑋𝐴))
7 inss2 4174 . . . . 5 ( 𝑋𝐴) ⊆ 𝐴
87a1i 11 . . . 4 (𝐴 𝑋 → ( 𝑋𝐴) ⊆ 𝐴)
9 id 22 . . . . 5 (𝐴 𝑋𝐴 𝑋)
10 ssidd 3954 . . . . 5 (𝐴 𝑋𝐴𝐴)
119, 10ssind 4177 . . . 4 (𝐴 𝑋𝐴 ⊆ ( 𝑋𝐴))
128, 11eqssd 3948 . . 3 (𝐴 𝑋 → ( 𝑋𝐴) = 𝐴)
1312adantl 482 . 2 ((𝑋𝑉𝐴 𝑋) → ( 𝑋𝐴) = 𝐴)
146, 13eqtrd 2777 1 ((𝑋𝑉𝐴 𝑋) → (𝑋t 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  Vcvv 3441  cin 3896  wss 3897   cuni 4850  (class class class)co 7315  t crest 17201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7318  df-oprab 7319  df-mpo 7320  df-rest 17203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator