| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrest | Structured version Visualization version GIF version | ||
| Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| Ref | Expression |
|---|---|
| elrest | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restval 17389 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐽 ↾t 𝐵) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵))) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ 𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)))) |
| 3 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) | |
| 4 | vex 3451 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 4 | inex1 5272 | . . 3 ⊢ (𝑥 ∩ 𝐵) ∈ V |
| 6 | 3, 5 | elrnmpti 5926 | . 2 ⊢ (𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
| 7 | 2, 6 | bitrdi 287 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3913 ↦ cmpt 5188 ran crn 5639 (class class class)co 7387 ↾t crest 17383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rest 17385 |
| This theorem is referenced by: elrestr 17391 restsspw 17394 firest 17395 restbas 23045 restsn 23057 restcld 23059 restopnb 23062 ssrest 23063 neitr 23067 restntr 23069 cnrest2 23173 cnpresti 23175 cnprest 23176 cnprest2 23177 lmss 23185 cmpsublem 23286 cmpsub 23287 connsuba 23307 1stcrest 23340 subislly 23368 cldllycmp 23382 txrest 23518 trfbas2 23730 trfbas 23731 trfil2 23774 flimrest 23870 fclsrest 23911 cnextcn 23954 tsmssubm 24030 trust 24117 restutop 24125 restutopopn 24126 trcfilu 24181 metrest 24412 xrtgioo 24695 xrge0tsms 24723 icoopnst 24836 iocopnst 24837 subopnmbl 25505 mbfimaopn2 25558 xrlimcnp 26878 xrge0tsmsd 33002 rspectopn 33857 bj-restsn 37070 bj-rest10 37076 bj-restn0 37078 bj-restpw 37080 bj-rest0 37081 bj-restb 37082 bj-restuni 37085 bj-restreg 37087 ptrest 37613 poimirlem29 37643 elrestd 45102 restuni3 45112 restsubel 45147 icccncfext 45885 subsaliuncl 46356 subsalsal 46357 salrestss 46359 sssmf 46736 incsmf 46740 decsmf 46765 smflimlem6 46774 smfco 46800 smfpimcc 46806 |
| Copyright terms: Public domain | W3C validator |