Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrest | Structured version Visualization version GIF version |
Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
elrest | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restval 17054 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐽 ↾t 𝐵) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵))) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ 𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)))) |
3 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) | |
4 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
5 | 4 | inex1 5236 | . . 3 ⊢ (𝑥 ∩ 𝐵) ∈ V |
6 | 3, 5 | elrnmpti 5858 | . 2 ⊢ (𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
7 | 2, 6 | bitrdi 286 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∩ cin 3882 ↦ cmpt 5153 ran crn 5581 (class class class)co 7255 ↾t crest 17048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-rest 17050 |
This theorem is referenced by: elrestr 17056 restsspw 17059 firest 17060 restbas 22217 restsn 22229 restcld 22231 restopnb 22234 ssrest 22235 neitr 22239 restntr 22241 cnrest2 22345 cnpresti 22347 cnprest 22348 cnprest2 22349 lmss 22357 cmpsublem 22458 cmpsub 22459 connsuba 22479 1stcrest 22512 subislly 22540 cldllycmp 22554 txrest 22690 trfbas2 22902 trfbas 22903 trfil2 22946 flimrest 23042 fclsrest 23083 cnextcn 23126 tsmssubm 23202 trust 23289 restutop 23297 restutopopn 23298 trcfilu 23354 metrest 23586 xrtgioo 23875 xrge0tsms 23903 icoopnst 24008 iocopnst 24009 subopnmbl 24673 mbfimaopn2 24726 xrlimcnp 26023 xrge0tsmsd 31219 rspectopn 31719 bj-restsn 35180 bj-rest10 35186 bj-restn0 35188 bj-restpw 35190 bj-rest0 35191 bj-restb 35192 bj-restuni 35195 bj-restreg 35197 ptrest 35703 poimirlem29 35733 elrestd 42547 restuni3 42556 icccncfext 43318 subsaliuncl 43787 subsalsal 43788 sssmf 44161 incsmf 44165 decsmf 44189 smflimlem6 44198 smfco 44223 smfpimcc 44228 |
Copyright terms: Public domain | W3C validator |