![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrest | Structured version Visualization version GIF version |
Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
elrest | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restval 17408 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐽 ↾t 𝐵) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵))) | |
2 | 1 | eleq2d 2815 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ 𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)))) |
3 | eqid 2728 | . . 3 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) | |
4 | vex 3475 | . . . 4 ⊢ 𝑥 ∈ V | |
5 | 4 | inex1 5317 | . . 3 ⊢ (𝑥 ∩ 𝐵) ∈ V |
6 | 3, 5 | elrnmpti 5962 | . 2 ⊢ (𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
7 | 2, 6 | bitrdi 287 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 ∩ cin 3946 ↦ cmpt 5231 ran crn 5679 (class class class)co 7420 ↾t crest 17402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-rest 17404 |
This theorem is referenced by: elrestr 17410 restsspw 17413 firest 17414 restbas 23075 restsn 23087 restcld 23089 restopnb 23092 ssrest 23093 neitr 23097 restntr 23099 cnrest2 23203 cnpresti 23205 cnprest 23206 cnprest2 23207 lmss 23215 cmpsublem 23316 cmpsub 23317 connsuba 23337 1stcrest 23370 subislly 23398 cldllycmp 23412 txrest 23548 trfbas2 23760 trfbas 23761 trfil2 23804 flimrest 23900 fclsrest 23941 cnextcn 23984 tsmssubm 24060 trust 24147 restutop 24155 restutopopn 24156 trcfilu 24212 metrest 24446 xrtgioo 24735 xrge0tsms 24763 icoopnst 24876 iocopnst 24877 subopnmbl 25546 mbfimaopn2 25599 xrlimcnp 26913 xrge0tsmsd 32784 rspectopn 33468 bj-restsn 36561 bj-rest10 36567 bj-restn0 36569 bj-restpw 36571 bj-rest0 36572 bj-restb 36573 bj-restuni 36576 bj-restreg 36578 ptrest 37092 poimirlem29 37122 elrestd 44474 restuni3 44484 restsubel 44524 icccncfext 45275 subsaliuncl 45746 subsalsal 45747 salrestss 45749 sssmf 46126 incsmf 46130 decsmf 46155 smflimlem6 46164 smfco 46190 smfpimcc 46196 |
Copyright terms: Public domain | W3C validator |