![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrest | Structured version Visualization version GIF version |
Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
elrest | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restval 17379 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐽 ↾t 𝐵) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵))) | |
2 | 1 | eleq2d 2813 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ 𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)))) |
3 | eqid 2726 | . . 3 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) | |
4 | vex 3472 | . . . 4 ⊢ 𝑥 ∈ V | |
5 | 4 | inex1 5310 | . . 3 ⊢ (𝑥 ∩ 𝐵) ∈ V |
6 | 3, 5 | elrnmpti 5952 | . 2 ⊢ (𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
7 | 2, 6 | bitrdi 287 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 ∩ cin 3942 ↦ cmpt 5224 ran crn 5670 (class class class)co 7404 ↾t crest 17373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-rest 17375 |
This theorem is referenced by: elrestr 17381 restsspw 17384 firest 17385 restbas 23013 restsn 23025 restcld 23027 restopnb 23030 ssrest 23031 neitr 23035 restntr 23037 cnrest2 23141 cnpresti 23143 cnprest 23144 cnprest2 23145 lmss 23153 cmpsublem 23254 cmpsub 23255 connsuba 23275 1stcrest 23308 subislly 23336 cldllycmp 23350 txrest 23486 trfbas2 23698 trfbas 23699 trfil2 23742 flimrest 23838 fclsrest 23879 cnextcn 23922 tsmssubm 23998 trust 24085 restutop 24093 restutopopn 24094 trcfilu 24150 metrest 24384 xrtgioo 24673 xrge0tsms 24701 icoopnst 24814 iocopnst 24815 subopnmbl 25484 mbfimaopn2 25537 xrlimcnp 26851 xrge0tsmsd 32713 rspectopn 33377 bj-restsn 36470 bj-rest10 36476 bj-restn0 36478 bj-restpw 36480 bj-rest0 36481 bj-restb 36482 bj-restuni 36485 bj-restreg 36487 ptrest 36998 poimirlem29 37028 elrestd 44353 restuni3 44363 restsubel 44403 icccncfext 45156 subsaliuncl 45627 subsalsal 45628 salrestss 45630 sssmf 46007 incsmf 46011 decsmf 46036 smflimlem6 46045 smfco 46071 smfpimcc 46077 |
Copyright terms: Public domain | W3C validator |