| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrest | Structured version Visualization version GIF version | ||
| Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| Ref | Expression |
|---|---|
| elrest | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restval 17396 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐽 ↾t 𝐵) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵))) | |
| 2 | 1 | eleq2d 2815 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ 𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)))) |
| 3 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) | |
| 4 | vex 3454 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 4 | inex1 5275 | . . 3 ⊢ (𝑥 ∩ 𝐵) ∈ V |
| 6 | 3, 5 | elrnmpti 5929 | . 2 ⊢ (𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
| 7 | 2, 6 | bitrdi 287 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∩ cin 3916 ↦ cmpt 5191 ran crn 5642 (class class class)co 7390 ↾t crest 17390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-rest 17392 |
| This theorem is referenced by: elrestr 17398 restsspw 17401 firest 17402 restbas 23052 restsn 23064 restcld 23066 restopnb 23069 ssrest 23070 neitr 23074 restntr 23076 cnrest2 23180 cnpresti 23182 cnprest 23183 cnprest2 23184 lmss 23192 cmpsublem 23293 cmpsub 23294 connsuba 23314 1stcrest 23347 subislly 23375 cldllycmp 23389 txrest 23525 trfbas2 23737 trfbas 23738 trfil2 23781 flimrest 23877 fclsrest 23918 cnextcn 23961 tsmssubm 24037 trust 24124 restutop 24132 restutopopn 24133 trcfilu 24188 metrest 24419 xrtgioo 24702 xrge0tsms 24730 icoopnst 24843 iocopnst 24844 subopnmbl 25512 mbfimaopn2 25565 xrlimcnp 26885 xrge0tsmsd 33009 rspectopn 33864 bj-restsn 37077 bj-rest10 37083 bj-restn0 37085 bj-restpw 37087 bj-rest0 37088 bj-restb 37089 bj-restuni 37092 bj-restreg 37094 ptrest 37620 poimirlem29 37650 elrestd 45109 restuni3 45119 restsubel 45154 icccncfext 45892 subsaliuncl 46363 subsalsal 46364 salrestss 46366 sssmf 46743 incsmf 46747 decsmf 46772 smflimlem6 46781 smfco 46807 smfpimcc 46813 |
| Copyright terms: Public domain | W3C validator |