| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrest | Structured version Visualization version GIF version | ||
| Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| Ref | Expression |
|---|---|
| elrest | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restval 17327 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐽 ↾t 𝐵) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵))) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ 𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)))) |
| 3 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) | |
| 4 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 4 | inex1 5255 | . . 3 ⊢ (𝑥 ∩ 𝐵) ∈ V |
| 6 | 3, 5 | elrnmpti 5902 | . 2 ⊢ (𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
| 7 | 2, 6 | bitrdi 287 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∩ cin 3901 ↦ cmpt 5172 ran crn 5617 (class class class)co 7346 ↾t crest 17321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-rest 17323 |
| This theorem is referenced by: elrestr 17329 restsspw 17332 firest 17333 restbas 23071 restsn 23083 restcld 23085 restopnb 23088 ssrest 23089 neitr 23093 restntr 23095 cnrest2 23199 cnpresti 23201 cnprest 23202 cnprest2 23203 lmss 23211 cmpsublem 23312 cmpsub 23313 connsuba 23333 1stcrest 23366 subislly 23394 cldllycmp 23408 txrest 23544 trfbas2 23756 trfbas 23757 trfil2 23800 flimrest 23896 fclsrest 23937 cnextcn 23980 tsmssubm 24056 trust 24142 restutop 24150 restutopopn 24151 trcfilu 24206 metrest 24437 xrtgioo 24720 xrge0tsms 24748 icoopnst 24861 iocopnst 24862 subopnmbl 25530 mbfimaopn2 25583 xrlimcnp 26903 xrge0tsmsd 33037 rspectopn 33875 bj-restsn 37115 bj-rest10 37121 bj-restn0 37123 bj-restpw 37125 bj-rest0 37126 bj-restb 37127 bj-restuni 37130 bj-restreg 37132 ptrest 37658 poimirlem29 37688 elrestd 45144 restuni3 45154 restsubel 45189 icccncfext 45924 subsaliuncl 46395 subsalsal 46396 salrestss 46398 sssmf 46775 incsmf 46779 decsmf 46804 smflimlem6 46813 smfco 46839 smfpimcc 46845 |
| Copyright terms: Public domain | W3C validator |