| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrest | Structured version Visualization version GIF version | ||
| Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| Ref | Expression |
|---|---|
| elrest | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restval 17348 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐽 ↾t 𝐵) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵))) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ 𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)))) |
| 3 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) | |
| 4 | vex 3442 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 4 | inex1 5259 | . . 3 ⊢ (𝑥 ∩ 𝐵) ∈ V |
| 6 | 3, 5 | elrnmpti 5908 | . 2 ⊢ (𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
| 7 | 2, 6 | bitrdi 287 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3904 ↦ cmpt 5176 ran crn 5624 (class class class)co 7353 ↾t crest 17342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-rest 17344 |
| This theorem is referenced by: elrestr 17350 restsspw 17353 firest 17354 restbas 23061 restsn 23073 restcld 23075 restopnb 23078 ssrest 23079 neitr 23083 restntr 23085 cnrest2 23189 cnpresti 23191 cnprest 23192 cnprest2 23193 lmss 23201 cmpsublem 23302 cmpsub 23303 connsuba 23323 1stcrest 23356 subislly 23384 cldllycmp 23398 txrest 23534 trfbas2 23746 trfbas 23747 trfil2 23790 flimrest 23886 fclsrest 23927 cnextcn 23970 tsmssubm 24046 trust 24133 restutop 24141 restutopopn 24142 trcfilu 24197 metrest 24428 xrtgioo 24711 xrge0tsms 24739 icoopnst 24852 iocopnst 24853 subopnmbl 25521 mbfimaopn2 25574 xrlimcnp 26894 xrge0tsmsd 33028 rspectopn 33833 bj-restsn 37055 bj-rest10 37061 bj-restn0 37063 bj-restpw 37065 bj-rest0 37066 bj-restb 37067 bj-restuni 37070 bj-restreg 37072 ptrest 37598 poimirlem29 37628 elrestd 45086 restuni3 45096 restsubel 45131 icccncfext 45869 subsaliuncl 46340 subsalsal 46341 salrestss 46343 sssmf 46720 incsmf 46724 decsmf 46749 smflimlem6 46758 smfco 46784 smfpimcc 46790 |
| Copyright terms: Public domain | W3C validator |