MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blvalps Structured version   Visualization version   GIF version

Theorem blvalps 24301
Description: The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blvalps ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
Distinct variable groups:   𝑥,𝑃   𝑥,𝐷   𝑥,𝑅   𝑥,𝑋

Proof of Theorem blvalps
Dummy variables 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfvalps 24299 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑦𝑋, 𝑟 ∈ ℝ* ↦ {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟}))
213ad2ant1 1133 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (ball‘𝐷) = (𝑦𝑋, 𝑟 ∈ ℝ* ↦ {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟}))
3 simprl 770 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → 𝑦 = 𝑃)
43oveq1d 7367 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → (𝑦𝐷𝑥) = (𝑃𝐷𝑥))
5 simprr 772 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → 𝑟 = 𝑅)
64, 5breq12d 5106 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → ((𝑦𝐷𝑥) < 𝑟 ↔ (𝑃𝐷𝑥) < 𝑅))
76rabbidv 3403 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟} = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
8 simp2 1137 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑃𝑋)
9 simp3 1138 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*)
10 elfvdm 6862 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet)
11103ad2ant1 1133 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑋 ∈ dom PsMet)
12 rabexg 5277 . . 3 (𝑋 ∈ dom PsMet → {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V)
1311, 12syl 17 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V)
142, 7, 8, 9, 13ovmpod 7504 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437   class class class wbr 5093  dom cdm 5619  cfv 6486  (class class class)co 7352  cmpo 7354  *cxr 11152   < clt 11153  PsMetcpsmet 21277  ballcbl 21280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-xr 11157  df-psmet 21285  df-bl 21288
This theorem is referenced by:  elblps  24303  blval2  24478
  Copyright terms: Public domain W3C validator