![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blvalps | Structured version Visualization version GIF version |
Description: The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
blvalps | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blfvalps 22596 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑦 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑥 ∈ 𝑋 ∣ (𝑦𝐷𝑥) < 𝑟})) | |
2 | 1 | 3ad2ant1 1124 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (ball‘𝐷) = (𝑦 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑥 ∈ 𝑋 ∣ (𝑦𝐷𝑥) < 𝑟})) |
3 | simprl 761 | . . . . 5 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → 𝑦 = 𝑃) | |
4 | 3 | oveq1d 6937 | . . . 4 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → (𝑦𝐷𝑥) = (𝑃𝐷𝑥)) |
5 | simprr 763 | . . . 4 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → 𝑟 = 𝑅) | |
6 | 4, 5 | breq12d 4899 | . . 3 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → ((𝑦𝐷𝑥) < 𝑟 ↔ (𝑃𝐷𝑥) < 𝑅)) |
7 | 6 | rabbidv 3386 | . 2 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → {𝑥 ∈ 𝑋 ∣ (𝑦𝐷𝑥) < 𝑟} = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
8 | simp2 1128 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → 𝑃 ∈ 𝑋) | |
9 | simp3 1129 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*) | |
10 | elfvdm 6478 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet) | |
11 | 10 | 3ad2ant1 1124 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → 𝑋 ∈ dom PsMet) |
12 | rabexg 5048 | . . 3 ⊢ (𝑋 ∈ dom PsMet → {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V) | |
13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V) |
14 | 2, 7, 8, 9, 13 | ovmpt2d 7065 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 {crab 3094 Vcvv 3398 class class class wbr 4886 dom cdm 5355 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 ℝ*cxr 10410 < clt 10411 PsMetcpsmet 20126 ballcbl 20129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-map 8142 df-xr 10415 df-psmet 20134 df-bl 20137 |
This theorem is referenced by: elblps 22600 blval2 22775 |
Copyright terms: Public domain | W3C validator |