![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blvalps | Structured version Visualization version GIF version |
Description: The ball around a point π is the set of all points whose distance from π is less than the ball's radius π . (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
blvalps | β’ ((π· β (PsMetβπ) β§ π β π β§ π β β*) β (π(ballβπ·)π ) = {π₯ β π β£ (ππ·π₯) < π }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blfvalps 24109 | . . 3 β’ (π· β (PsMetβπ) β (ballβπ·) = (π¦ β π, π β β* β¦ {π₯ β π β£ (π¦π·π₯) < π})) | |
2 | 1 | 3ad2ant1 1133 | . 2 β’ ((π· β (PsMetβπ) β§ π β π β§ π β β*) β (ballβπ·) = (π¦ β π, π β β* β¦ {π₯ β π β£ (π¦π·π₯) < π})) |
3 | simprl 769 | . . . . 5 β’ (((π· β (PsMetβπ) β§ π β π β§ π β β*) β§ (π¦ = π β§ π = π )) β π¦ = π) | |
4 | 3 | oveq1d 7426 | . . . 4 β’ (((π· β (PsMetβπ) β§ π β π β§ π β β*) β§ (π¦ = π β§ π = π )) β (π¦π·π₯) = (ππ·π₯)) |
5 | simprr 771 | . . . 4 β’ (((π· β (PsMetβπ) β§ π β π β§ π β β*) β§ (π¦ = π β§ π = π )) β π = π ) | |
6 | 4, 5 | breq12d 5161 | . . 3 β’ (((π· β (PsMetβπ) β§ π β π β§ π β β*) β§ (π¦ = π β§ π = π )) β ((π¦π·π₯) < π β (ππ·π₯) < π )) |
7 | 6 | rabbidv 3440 | . 2 β’ (((π· β (PsMetβπ) β§ π β π β§ π β β*) β§ (π¦ = π β§ π = π )) β {π₯ β π β£ (π¦π·π₯) < π} = {π₯ β π β£ (ππ·π₯) < π }) |
8 | simp2 1137 | . 2 β’ ((π· β (PsMetβπ) β§ π β π β§ π β β*) β π β π) | |
9 | simp3 1138 | . 2 β’ ((π· β (PsMetβπ) β§ π β π β§ π β β*) β π β β*) | |
10 | elfvdm 6928 | . . . 4 β’ (π· β (PsMetβπ) β π β dom PsMet) | |
11 | 10 | 3ad2ant1 1133 | . . 3 β’ ((π· β (PsMetβπ) β§ π β π β§ π β β*) β π β dom PsMet) |
12 | rabexg 5331 | . . 3 β’ (π β dom PsMet β {π₯ β π β£ (ππ·π₯) < π } β V) | |
13 | 11, 12 | syl 17 | . 2 β’ ((π· β (PsMetβπ) β§ π β π β§ π β β*) β {π₯ β π β£ (ππ·π₯) < π } β V) |
14 | 2, 7, 8, 9, 13 | ovmpod 7562 | 1 β’ ((π· β (PsMetβπ) β§ π β π β§ π β β*) β (π(ballβπ·)π ) = {π₯ β π β£ (ππ·π₯) < π }) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 class class class wbr 5148 dom cdm 5676 βcfv 6543 (class class class)co 7411 β cmpo 7413 β*cxr 11251 < clt 11252 PsMetcpsmet 21128 ballcbl 21131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-map 8824 df-xr 11256 df-psmet 21136 df-bl 21139 |
This theorem is referenced by: elblps 24113 blval2 24291 |
Copyright terms: Public domain | W3C validator |