Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  blvalps Structured version   Visualization version   GIF version

Theorem blvalps 22995
 Description: The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blvalps ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
Distinct variable groups:   𝑥,𝑃   𝑥,𝐷   𝑥,𝑅   𝑥,𝑋

Proof of Theorem blvalps
Dummy variables 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfvalps 22993 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑦𝑋, 𝑟 ∈ ℝ* ↦ {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟}))
213ad2ant1 1130 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (ball‘𝐷) = (𝑦𝑋, 𝑟 ∈ ℝ* ↦ {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟}))
3 simprl 770 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → 𝑦 = 𝑃)
43oveq1d 7154 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → (𝑦𝐷𝑥) = (𝑃𝐷𝑥))
5 simprr 772 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → 𝑟 = 𝑅)
64, 5breq12d 5046 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → ((𝑦𝐷𝑥) < 𝑟 ↔ (𝑃𝐷𝑥) < 𝑅))
76rabbidv 3430 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟} = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
8 simp2 1134 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑃𝑋)
9 simp3 1135 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*)
10 elfvdm 6681 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet)
11103ad2ant1 1130 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑋 ∈ dom PsMet)
12 rabexg 5201 . . 3 (𝑋 ∈ dom PsMet → {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V)
1311, 12syl 17 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V)
142, 7, 8, 9, 13ovmpod 7285 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  {crab 3113  Vcvv 3444   class class class wbr 5033  dom cdm 5523  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  ℝ*cxr 10667   < clt 10668  PsMetcpsmet 20078  ballcbl 20081 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-map 8395  df-xr 10672  df-psmet 20086  df-bl 20089 This theorem is referenced by:  elblps  22997  blval2  23172
 Copyright terms: Public domain W3C validator