MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blvalps Structured version   Visualization version   GIF version

Theorem blvalps 23237
Description: The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blvalps ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
Distinct variable groups:   𝑥,𝑃   𝑥,𝐷   𝑥,𝑅   𝑥,𝑋

Proof of Theorem blvalps
Dummy variables 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfvalps 23235 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑦𝑋, 𝑟 ∈ ℝ* ↦ {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟}))
213ad2ant1 1135 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (ball‘𝐷) = (𝑦𝑋, 𝑟 ∈ ℝ* ↦ {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟}))
3 simprl 771 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → 𝑦 = 𝑃)
43oveq1d 7206 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → (𝑦𝐷𝑥) = (𝑃𝐷𝑥))
5 simprr 773 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → 𝑟 = 𝑅)
64, 5breq12d 5052 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → ((𝑦𝐷𝑥) < 𝑟 ↔ (𝑃𝐷𝑥) < 𝑅))
76rabbidv 3380 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟} = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
8 simp2 1139 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑃𝑋)
9 simp3 1140 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*)
10 elfvdm 6727 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet)
11103ad2ant1 1135 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑋 ∈ dom PsMet)
12 rabexg 5209 . . 3 (𝑋 ∈ dom PsMet → {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V)
1311, 12syl 17 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V)
142, 7, 8, 9, 13ovmpod 7339 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  {crab 3055  Vcvv 3398   class class class wbr 5039  dom cdm 5536  cfv 6358  (class class class)co 7191  cmpo 7193  *cxr 10831   < clt 10832  PsMetcpsmet 20301  ballcbl 20304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-map 8488  df-xr 10836  df-psmet 20309  df-bl 20312
This theorem is referenced by:  elblps  23239  blval2  23414
  Copyright terms: Public domain W3C validator