![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blval | Structured version Visualization version GIF version |
Description: The ball around a point π is the set of all points whose distance from π is less than the ball's radius π . (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
blval | β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π(ballβπ·)π ) = {π₯ β π β£ (ππ·π₯) < π }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blfval 23890 | . . 3 β’ (π· β (βMetβπ) β (ballβπ·) = (π¦ β π, π β β* β¦ {π₯ β π β£ (π¦π·π₯) < π})) | |
2 | 1 | 3ad2ant1 1134 | . 2 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (ballβπ·) = (π¦ β π, π β β* β¦ {π₯ β π β£ (π¦π·π₯) < π})) |
3 | simprl 770 | . . . . 5 β’ (((π· β (βMetβπ) β§ π β π β§ π β β*) β§ (π¦ = π β§ π = π )) β π¦ = π) | |
4 | 3 | oveq1d 7424 | . . . 4 β’ (((π· β (βMetβπ) β§ π β π β§ π β β*) β§ (π¦ = π β§ π = π )) β (π¦π·π₯) = (ππ·π₯)) |
5 | simprr 772 | . . . 4 β’ (((π· β (βMetβπ) β§ π β π β§ π β β*) β§ (π¦ = π β§ π = π )) β π = π ) | |
6 | 4, 5 | breq12d 5162 | . . 3 β’ (((π· β (βMetβπ) β§ π β π β§ π β β*) β§ (π¦ = π β§ π = π )) β ((π¦π·π₯) < π β (ππ·π₯) < π )) |
7 | 6 | rabbidv 3441 | . 2 β’ (((π· β (βMetβπ) β§ π β π β§ π β β*) β§ (π¦ = π β§ π = π )) β {π₯ β π β£ (π¦π·π₯) < π} = {π₯ β π β£ (ππ·π₯) < π }) |
8 | simp2 1138 | . 2 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β π β π) | |
9 | simp3 1139 | . 2 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β π β β*) | |
10 | elfvdm 6929 | . . . 4 β’ (π· β (βMetβπ) β π β dom βMet) | |
11 | 10 | 3ad2ant1 1134 | . . 3 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β π β dom βMet) |
12 | rabexg 5332 | . . 3 β’ (π β dom βMet β {π₯ β π β£ (ππ·π₯) < π } β V) | |
13 | 11, 12 | syl 17 | . 2 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β {π₯ β π β£ (ππ·π₯) < π } β V) |
14 | 2, 7, 8, 9, 13 | ovmpod 7560 | 1 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π(ballβπ·)π ) = {π₯ β π β£ (ππ·π₯) < π }) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 {crab 3433 Vcvv 3475 class class class wbr 5149 dom cdm 5677 βcfv 6544 (class class class)co 7409 β cmpo 7411 β*cxr 11247 < clt 11248 βMetcxmet 20929 ballcbl 20931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-map 8822 df-xr 11252 df-psmet 20936 df-xmet 20937 df-bl 20939 |
This theorem is referenced by: elbl 23894 metss2lem 24020 stdbdbl 24026 nmhmcn 24636 lgamucov 26542 isbnd3 36652 |
Copyright terms: Public domain | W3C validator |